• Title/Summary/Keyword: Planar SOFCs

Search Result 13, Processing Time 0.021 seconds

Structure and Oxidation Behavior of the $LaCrO_3$-dispersed Cr alloys ($LaCrO_3$가 분산된 Cr 합금의 구조 및 산화거동)

  • Jeon, Kwang-Sun;Song, Rak-Hyun;Shin, Dong-Ryul;Jo, J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1303-1305
    • /
    • 1998
  • In order to reduce or avoid oxidation problem at operation the interconnects in SOFCs have so far mostly been made of ceramic material. It has high chemical stability both under cathode and anode condition, relatively thermal expansion coefficient that matchs that of electrolyte material YSZ. But this material shown rather weak in the low oxygen atmosphere and thermal shock, and it has lower mechanical strength than alloys. To avoid these problems one may consider to use metals or alloys as materials for interconnects. Metallic interconnects are advantageous because of their high thermal and electronic conductivities. But it has some problems, Those are high thermal expansion and oxidation at high temperature in air. To solve these problems in the interconnection material in this study, $LaCrO_3$-dispersed Cr alloys for metallic interconnector of SOFC have been investigated as a fuction of $LaCrO_3$ content in the range of 5 to 25 vol.%. The Cr alloy were prepared by mixing Cr and $LaCrO_3$ powders in high-energy ball mill for 48h and by sintering under Ar atmosphere with 5vol.% $H_2$ for 10h at $1500^{\circ}C$. The alloys had a relative density of 95% and above. The Cr alloys in composed of two kind of small $LaCrO_3$ and large Cr particles. As the $LaCrO_3$ content increased, the Cr particle size decreased but the $LaCrO_3$ particle size remained contant. Also the oxidation tests show that the $LaCrO_3$-dispersed Cr is very resistant to oxidation in air. These results means that $LaCrO_3$-dispersed Cr is a useful material for metallic interconnect of planar SOFC.

  • PDF

Development of kW Class SOFC Systems for Combined Heat and Power Units at KEPRI

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Keun-Bae;Yoo, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.772-776
    • /
    • 2008
  • The Korea Electric Power Research Institute (KEPRI) has been developing planar solid oxide fuel cells (SOFCs) and power systems for combined heat and power (CHP) units. The R&D work includes solid oxide fuel cell (SOFC) materials investigation, design and fabrication of single cells and stacks, and kW class SOFC CHP system development. Anode supported cells composed of Ni-YSZ/FL/YSZ/LSCF were enlarged up to $15{\times}15\;cm^2$ and stacks were manufactured using $10{\times}10\;cm^2$ cells and metallic interconnects such as ferritic stainless steel. The first-generation system had a 37-cell stack and an autothermal reformer for use with city gas. The system showed maximum stack power of about $1.3\;kW_{e,DC}$ and was able to recover heat of $0.57{\sim}1.2\;kW_{th}$ depending on loaded current by making hot water. The second-generation system was composed of an improved 48-cell stack and a prereformer (or steam reformer). The thermal management subsystem design including heat exchangers and insulators was also improved. The second-generation system was successfully operated without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_{e,DC}$ with hydrogen and $1.2\;kW_{e,DC}$ with city. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water. Recently KEPRI manufactured a 2kW class SOFC stack and a system by scaling up the second-generation 1kW system and will develop a 5kW class CHP system by 2010.

A Case Study of Different Configurations for the Performance Analysis of Solid Oxide Fuel Cells with External Reformers (외부 개질형 평판형 고체 산화물 연료전지 시스템 구성법에 따른 효율특성)

  • Lee, Kang-Hun;Woo, Hyun-Tak;Lee, Sang-Min;Lee, Young-Duk;Kang, Sang-Gyu;Ahn, Kook-Young;Yu, Sang-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.343-350
    • /
    • 2012
  • A planar solid oxide fuel cell (PSOFC) is studied in its application in a high-temperature stationary power plant. Even though PSOFCs with external reformers are designed for application from the distributed power source to the central power plant, such PSOFCs may sacrifice more system efficiency than internally reformed SOFCs. In this study, modeling of the PSOFC with an external reformer was developed to analyze the feasibility of thermal energy utilization for the external reformer. The PSOFC system model includes the stack, reformer, burner, heat exchanger, blower, pump, PID controller, 3-way valve, reactor, mixer, and steam separator. The model was developed under the Matlab/Simulink environment with Thermolib$^{(R)}$ modules. The model was used to study the system performance according to its configuration. Three configurations of the SOFC system were selected for the comparison of the system performance. The system configuration considered the cathode recirculation, thermal sources for the external reformer, heat-up of operating gases, and condensate anode off-gas for the enhancement of the fuel concentration. The simulation results show that the magnitude of the electric efficiency of the PSOFC system for Case 2 is 12.13% higher than that for Case 1 (reference case), and the thermal efficiency of the PSOFC system for Case 3 is 76.12%, which is the highest of all the cases investigated.