• 제목/요약/키워드: Planar Lipid Bilayer

검색결과 12건 처리시간 0.023초

Dual Action of d-Tubocurarine on Large-Conductance $Ca^{2+}-activated$ $K^+$ Channels from Rat Brain Reconstituted into Planar Lipid Bilayer

  • Chung, Sung-Kwon;Shin, Jung-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.549-553
    • /
    • 1998
  • Using the planar lipid bilayer method, we investigated the effect of d-tubocurarine (dTC) on the extracellular side of large-conductance $Ca^{2+}-activated\;K^+$ channel from rat brain. When the initial open probability (Po) of the channel was relatively high, dTC decreased channel activity in a concentration dependent manner. In contrast, when the initial Po was lower, sub-micro molar dTC increased channel activity by destabilizing the closed states of the channel. Further addition of dTC up to micro molar range decreased channel activity. This dual effect of dTC implicates that there exist at least two different binding sites for dTC.

  • PDF

Effect of Variation of Membrane Thickness on the Activity of $Ca^{2+}$-activated $K^+$ Channel in Planar Lipid Bilayers

  • Seo, Hyoung-Sik;Ryu, Pan-Dong
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.56-56
    • /
    • 1999
  • Change of membrane property can affect the activity of membrane proteins. In this work, we investigated the single channel properties of large conductance $Ca^{2+}$-activated $K^{+}$(BK) channels in planar lipid bilayers of different thickness. First, we recorded the activity of single BK channels from rat skeletal muscle incorporated into the control bilayer, then increased the bilayer thickness by perfusing the recording solution with the one saturated with n-pentane, or reduced the thickness by adding diheptanoylphosphatidylcholine (di$C_{7:0}$PC) to the recording soluton.(omitted)

  • PDF

평지방막에 융합된 골격근의 single ATP-sensitive K+ channel의 이온투과성에 대한 연구 (Permeability properties of skeletal muscle ATP-sensitive K+ channels reconstituted into planar lipid bilayer)

  • 류판동
    • 대한수의학회지
    • /
    • 제32권4호
    • /
    • pp.543-553
    • /
    • 1992
  • Properties of unitary ATP-sensitive $K^+$ channels were studied using planar lipid bilayer technique. Vesicles were prepared from bullfrog (Rana catesbeiana) skeletal muscle. ATP-sensitive $K^+$ (K (ATP)) channels were identified by their unitary conductance and sensitivity to ATP. In the symmetrical solution containing 200mM KCI, 10mM Hepes, 1mM EGTA and pH 7.2, single K (ATP) channels showed a linear current-voltage relations with slight inward rectification. Slope conductance at reversal potential was $60.1{\pm}0.43$ pS(n=3)). Micromolar ATP reversibly inhibited the channel activity when applied to the cytoplasmic side. In the range of -50~+50 mV, the channel activity was not voltage-dependent, but the channel gating within a burst was more frequent at negative voltage range. Varying the concentrations of external/internal KCl(mM) to 40/200, 200/200, 200/100 and 200/40 shifted reversal potentials to $-30.8{\pm}2.9$(n=3), $-1.1{\pm}2.7$(n=3), 10.5 and 30.6(mV), respecrivety. These reversal potentials were close to the expected values by the Nernst equation, indicating nearly ideal selectivity for $K^+$ over $Cl^-$. Under bi-ionic conditions of 200mM external test ions and 200mM internal $K^+$, the reversal potentials for each test ion/K pair were measured. The measured reversal potentials were used for the calculation of the releative permeability of alkali cations to $K^+$ ions using the Goldman-Hodgkin-Katz equation. The permeability sequence of 5 cations relative to $K^+$ was $K^+$(1), $Rb^+$(0.49), $Cs^+$(0.27), $Na^+$(0.027) and $Li^+$(0.021). This sequence was recognized as Eisenman's selectivity sequence IV. In addition, modelling the permeation of $K^+$ ion through ATP-sensitive $K^+$ channel revealed that a 3-barrier 2-site multiple occupancy model can reasonably predict the observed current-voltage relations.

  • PDF

Mechanisms of Selective Antimicrobial Activity of Gaegurin 4

  • Kim, Hee-Jeong;Lee, Byeong-Jae;Lee, Mun-Han;Hong, Seong-Geun;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.39-47
    • /
    • 2009
  • Gaegurin 4(GGN 4), an antimicrobial peptide isolated from a Korean frog, is five times more potent against Gram-positive than Gram-negative bacteria, but has little hemolytic activity. To understand the mechanism of such cell selectivity, we examined GGN4-induced $K^+$ efflux from target cells, and membrane conductances in planar lipid bilayers. The $K^+$ efflux from Gram-positive M. luteus(2.5 ${\mu}g/ml$) was faster and larger than that from Gram-negative E. coli(75 ${\mu}g/ml$), while that from RBC was negligible even at higher concentration(100 ${\mu}g/ml$). GGN4 induced larger conductances in the planar bilayers which were formed with lipids extracted from Gram-positive B. subtilis than in those from E. coli(p<0.01), however, the effects of GGN4 were not selective in the bilayers formed with lipids from E. coli and red blood cells. Addition of an acidic phospholipid, phosphatidylserine to planar bilayers increased the GGN4-induced membrane conductance(p<0.05), but addition of phosphatidylcholine or cholesterol reduced it(p<0.05). Transmission electron microscopy revealed that GGN4 induced pore-like damages in M. luteus and dis-layering damages on the outer wall of E. coli. Taken together, the present results indicate that the selectivity of GGN4 toward Gram-positive over Gram-negative bacteria is due to negative surface charges, and interaction of GGN4 with outer walls. The selectivity toward bacteria over RBC is due to the presence of phosphatidylcholine and cholesterol, and the trans-bilayer lipid asymmetry in RBC. The results suggest that design of selective antimicrobial peptides should be based on the composition and topology of membrane lipids in the target cells.

Structural Design and Characterization of a Channel-forming Peptide

  • Krittanai, Chartchai;Panyim, Sakol
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.460-465
    • /
    • 2004
  • A 16-residue polypeptide model with the sequence acetyl-YALSLAATLLKEAASL-OH was derived by rational de novo peptide design. The designed sequence consists of amino acid residues with high propensity to adopt an alpha helical conformation, and sequential order was arranged to produce an amphipathic surface. The designed sequence was chemically synthesized using a solid-phase method and the polypeptide was purified by reverse-phase liquid chromatography. Molecular mass analysis by electro-spray ionization mass spectroscopy confirmed the correct designed sequence. Structural characterization by circular dichroism spectroscopy demonstrated that the peptide adopts the expected alpha helical conformation in 50% acetonitrile solution. Liposome binding assay using Small Unilamellar Vesicle (SUV) showed a marked release of entrapped glucose by interaction between the lipid membrane and the tested peptide. The channel-forming activity of the peptide was revealed by a planar lipid bilayer experiment. An analysis of the conducting current at various applied potentials suggested that the peptide forms a cationic ion channel with an intrinsic conductance of 188 pS. These results demonstrate that a simple rational de novo design can be successfully employed to create short peptides with desired structures and functions.

Properties of Single $K^{+}$ Channels of Skeletal Muscle Incorporated into Planar Lipid Bilayer

  • Park, Jin-Bong;Kim, Hee-Jeong;Cho, Myung-Haing;Lee, Hang;Park, Hong-Ki;Lee, Mun-Han;Ryu, Pan-Dong
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.13-27
    • /
    • 1995
  • single $K^{+}$ channels of skeletal muscle from the rat and frog were into planar lipid bilayers and their properties were studied. Fusion was induced by an osmotic gradient. Of the four types of $K^{+}$ channels recorded, the two most frequently observed were a voltage and $Ca^{2+}-activated$ $K^{+}$ channel and a $K^{+}$ channel with a prominent conductance substate. The first $K^{+}$ channel was identified as the large $Ca^{2+}-activated$ $K^{+}$ (BK) channel because the open-state probability was increased with depolarization (e-fold change per $10.6{\pm}3.5$ mV, n=8) and internal $Ca^{2+}$ (half-activation at $16.7{\pm}3.8$ mV, n=8, pCa 4) and its conductance was large ($247{\pm}4.9$ pS, n=24 in 0.1 M KCI). Lifetime distributions of open- and closed-states could be fitted with single exponentials of several milliseconds. The mean open- and closed-lifetimes were linearly dependent on the intracellular $[Ca^{2+}]$ and $1/[Ca^{2+}]$, respectively. The second $K^{+}$ channel showed a conductance substate at $30{\sim}60%$ of the open state. Its current-voltage relation was linear in the range of $-80\;{\sim}\;+80\;mV$. The slope conductance of the substate and open-state were 40 and 144 pS in 0.2 M KCl, respectively. The channel was highly selective for $K^{+}$ over Cl. The open-state probability was weakly voltage-dependent (e-fold change per 35 mV. The lifetime distributions of open- and closed-states were fitted with two exponentials and the major gating occurred slowly at several hundred milliseconds. Based on the above results, we think the second type of $K^{+}$ channel is the sarcoplasmic reticulum $K^{+}$ (SRK) channel. In addition, both types of channel were also incorporated into the lipids extracted from the skeletal muscle. The channel properties recorded in the bilayers termed from synthetic and extracted lipids were qualitatively similar. Our data indicate that BK and SRK channels are rich in the skeletal muscle and their properties and regulation could be effectively studied in planar lipid bilayer.

  • PDF

Solid-state NMR Studies of Membrane Proteins Using Phospholipid Bicelles

  • Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권3호
    • /
    • pp.386-388
    • /
    • 2006
  • Membrane proteins in highly oriented lipid bilayer samples are useful for membrane protein structure determination. We used in the past planar lipid bilayers which were aligned and supported on the glass slide. These samples were mechanically aligned in a magnetic field. However, these stacks of glass slides with planar lipid bilayers are not well suited for use with a commercial solid-state NMR probe with a round coil. Therefore, a homebuilt solid-state NMR probe was built and used with a stack of thin glass plates wherein the RF coil was wrapped directly around the flat square sample. Recently, we began to use magnetically aligned bicelles that are suitable for the structure determination of membrane proteins by solid-state NMR spectroscopy without any effort to build a flat square coil probe. These bicelle samples are well suited for use with a commercial solidstate NMR probe with a round coil, are very easy to prepare and are very stable, so that they can be kept for more than a year. In this paper, we present the solid-state NMR spectra of optimized and magnetically oriented bicelle samples of membrane proteins.

Home-built Solid-state NMR Probe for Membrane Protein Studies

  • Kim, Yong-Ae;Hwang, Jung-Hyun;Park, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권9호
    • /
    • pp.1281-1283
    • /
    • 2003
  • Proteins in highly oriented lipid bilayer samples are useful to study membrane protein structure determination. Planar lipid bilayers aligned and supported on glass slide were prepared. These stack of glass slide with planar lipid bilayers are not well fit for commercial solid-state NMR probe with round coil. Therefore, homebuilt solid-state NMR probe was built and used for a stack of thin glass plates and RF coil is wrapping directly around the flat square sample. The overall filling factor of the coil is much better and the large surface area enhances the extent to orientation by providing uniform environments for the phospholipids and the high ratio of circumference to area reduces edge effects. $^1H\;and\;^{15}N$ double resonance probe for 400 MHz NMR (9.4T) with a flat coil (coil size: 11 mm ${\times}$ 20 mm ${\times}$ 4 mm) is constructed and tested.

Increased Activity of Large Conductance $Ca^{2+}-Activated$ $K^+$ Channels in Negatively-Charged Lipid Membranes

  • Park, Jin-Bong;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.529-539
    • /
    • 1998
  • The effects of membrane surface charge originated from lipid head groups on ion channels were tested by analyzing the activity of single large conductance $Ca^{2+}-activated\;K^+$ (maxi K) channel from rat skeletal muscle. The conductances and open-state probability ($P_o$) of single maxi K channels were compared in three types of planar lipid bilayers formed from a neutral phosphatidylethanolamine (PE) or two negatively-charged phospholipids, phosphatidylserine (PS) and phosphatidylinositol (PI). Under symmetrical KCl concentrations $(3{\sim}1,000\;mM)$, single channel conductances of maxi K channels in charged membranes were $1.1{\sim}1.7$ times larger than those in PE membranes, and the differences were more pronounced at the lower ionic strength. The average slope conductances at 100 mM KCl were $251{\pm}9.9$, $360{\pm}8.7$ and $356{\pm}12.4$ $(mean{\pm}SEM)$ pS in PE, PS and PI membranes respectively. The potentials at which $P_o$ was 1/2, appeared to have shifted left by 40 mV along voltage axis in the membranes formed with PS or PI. Such shift was consistently seen at pCa 5, 4.5, 4 and 3.5. Estimation of the effect of surface charge from these data indicated that maxi K channels sensed the surface potentials at a distance of $8{\sim}9\;{\AA}$ from the membrane surface. In addition, similar insulation distance ($7{\sim}9\;{\AA}$) of channel mouth from the bilayer surface charge was predicted by a 3-barrier-2-site model of energy profile for the permeation of $K^+$ ions. In conclusion, despite the differences in structure and fluidity of phospholipids in bilayers, the activities of maxi K channels in two charged membranes composed of PS or PI were strikingly similar and larger than those in bilayers of PE. These results suggest that the enhancement of conductance and $P_o$ of maxi channels is mostly due to negative charges in the phospholipid head groups.

  • PDF

NITRIC OXIDE (NO) DIRECTLY ACTIVATES CALCIUM-ACTIVATED POTASSIUM CHANNELS FROM RAT BRAIN RECONSTITUTED INTO PLANAR LIPID BILAYER

  • Shin, Jung-Hoon;Suh, Chang-Kook;Sungkwon Chung;Uhm, Dae-Yong
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.35-35
    • /
    • 1996
  • Nitric oxide (NO) has been reported to have many roles in vivo ranging from the neurotransmitter in brain to the relaxant in smooth muscles. Recently, using inside-out patches, Bolotina et al. (1) showed that relaxing effect of NO is aortic smooth muscle is through direct activation of Ca2+-activated K+ channels (maxi-K), resulting in hyperpolarization. (omitted)

  • PDF