• Title/Summary/Keyword: Planar Active Phased Array

Search Result 16, Processing Time 0.021 seconds

A Study on Fault Diagnosis for Planar Active Phased Array Antenna (평면 능동위상배열안테나 결함소자 진단방법에 관한 연구)

  • Jin-Woo Jung;Seung-Ho Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • A radiating elements fault diagnosis method with simplified radiation pattern measurement procedure was presented for planar active phased array antenna system. For presenting the mentioned method, the technique for linear approximation based on the radiation characteristics of a planar array configuration and a technique for solving a unique solution problem that occur in process of diagnosing a fault in a radiating elements were presented. Based on the presented method and a genetic algorithm, experimental simulations were performed for radiating element defect diagnosis according to various planar active phased array antenna configurations. As a result, it was confirmed that the presented radiating element fault diagnosis method can be smoothly applied to planar active phased antennas having various configurations.

A study on the active phased array antennas with slotline coupling (슬롯라인 결합을 이용한 능동 위상배열안테나에 관한 연구)

  • Mun, Cheol;Kim, Seon-Taek;Yoon, Young-Joong;Park, Han-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.5
    • /
    • pp.981-989
    • /
    • 1997
  • In this paper, the 5-element active phased array antennas coupled through slotline between elements are designed and fabricated. A recent studies on the active phased array antennas using the transmission line coupling which can be designed to provide strong coupling and the appropriate coupling phase. But this sturucture has limitation of expanding in two dimensions for planar active phased array antennas and distortion of the radiation pattern caused by coupling network. Thus our work proposes the slotline coupling structure asthe broadband coupling network for the active phased array antenna. In experiment, 5-elements active phased array antenas have steering range from -30.deg. to 20.deg. off broadside as the free-running frequencies of end elements are controlled. The overall results show that the proposed slotline coupling structure is suited for the coupling network in the actie phased array antenna system. And the proposed coupling structire solves the expansion problem and eliminates the distortion of the radiation pattern caused by the spurious radiation of the transmission line coupling network. Thus thiscan be expanded to two dimensional coupling network for the planar active phased array antenna system.

  • PDF

A study of a planar active phased array antenna using two-dimensionally coupled slot-lines (이차원 슬롯라인 결합을 이용한 이차원 능동 위상배열 안테나에 관한 연구)

  • 이태윤;김준모;윤영중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1963-1970
    • /
    • 1998
  • In this paper, a two-dimensional slotline coupling structure is proposed for the planar active phased array antenna system with scanning the beam by coupled oscillators without phase shifters. The operating characteristics are analyzed and experimentally demonstrated. The proposed two-dimensional slotline coupling structure consists of $|{=}|$-type slotline in the ground plane for the coupling of E-plane and H-plane. From the simulation results of coupling strength with the variation of width, length and the number of slotlines, the optimal coupling structure is proposed and applied to $2{\times}5$ elements of planear phased array antenna. The experimental results show that the beamwidth of E-plane and H-pland are $42^{\circ}$ and $15^{\circ}$, respectivly, and the scanning range is from $-20^{\circ}$ to $15^{\circ}$ from the broadside. Therefore, it is shown the two-dimensional slotline coupling structure for oscillator-type active phased array antenna can be applied to the planar phased array antenna system.

  • PDF

Study on the Tx/Rx Beam Performance of Planar Active Phased Array Antenna for Airborne as using the Near-field Measurement (근접전계 시험을 이용한 항공기용 평면형 능동 위상 배열 안테나 송수신 빔 성능 검증에 관한 연구)

  • Kim, Young-Wan;Lee, Jaemin;Lee, Yuri;Kim, JongPhil;Park, Jong-Kuk;Park, Kyuchul;Kim, Sunju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we described about methods and results to verify the Tx/Rx beam characteristics of a planar active phased array antenna as using a near-field measurement. The near-field system can effectively measure multiple beams and predict the performance degradation due to the partial failure of individual elements. Also, it can accurately predict the EIRP relating to detection performance of the active phased array radar. We briefly described the near-field measurement method to verify the Tx/Rx beam characteristics, and then verified the effectiveness of measurement method by analyzing the measured results.

Development of the Planar Active Phased Array Radar System with Real-time Adaptive Beamforming and Signal Processing (실시간으로 적응빔형성 및 신호처리를 수행하는 평면능동위상배열 레이더 시스템 개발)

  • Kim, Kwan Sung;Lee, Min Joon;Jung, Chang Sik;Yeom, Dong Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.812-819
    • /
    • 2012
  • Interference and jamming are becoming increasing concern to a radar system nowdays. AESA(Active Electronically Steered Array) antennas and adaptive beamforming(ABF), in which antenna beam patterns can be modified to reject the interference, offer a potential solution to overcome the problems encountered. In this paper, we've developed a planar active phased array radar system, in which ABF, target detection and tracking algorithm operate in real-time. For the high output power and the low noise figure of the antenna, we've designed the S-band TRMs based on GaN HEMT. For real-time processing, we've used wavelenth division multiplexing technique on fiber optic communication which enables rapid data communication between the antenna and the signal processor. Also, we've implemented the HW and SW architecture of Real-time Signal Processor(RSP) for adaptive beamforming that uses SMI(Sample Matrix Inversion) technique based on MVDR(Minimum Variance Distortionless Response). The performance of this radar system has been verified by near-field and far-field tests.

A Study on A Dimensional Active Phased Array Antenna (2차원 Quasi-optical 능동배열 안테나에 관한 연구)

  • 김준모;윤형국;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.514-522
    • /
    • 2000
  • In this thesis, a two-dimensional active phased array antenna without phase shifter is studied for two-dimensional beam scanning. A designed two-dimensional oscillator-type active array antenna, radiation elements and the oscillator circuits were combined with via-hole and coupled by slot on the opposite ground plane. The operating characteristics are analyzed and experimentally demonstrated , The two-dimensional $4\times4$ elements were designed for the proper coupling strengths and coupling phases by adjusting the width, length and offset position of slot-lines. The fabricated active phased array antenna shows the beam shift characteristics capable of scanning from $-17^{\circ}$ to $18^{\circ}$ with respect to broadside in one dimension, from $-5^{\circ}$ to $10^{\circ}$ in two dimension. The experimental results show that it is possible to use the oscillator-type active phased array antenna as a two-dimensional planar array antenna.

  • PDF

Design of Ka-band Planar Active Phased Array Antenna (Ka밴드 평면형 능동위상배열 안테나장치 설계)

  • Han, Jae-Seob;Kim, Young-Wan;Baek, Jong-Gyun;Kim, Jong-Pil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, we described the design of Ka-band planar active phased array antenna which is applicable for small RADAR for airborne and seeker of guided missile. The antenna consists of about 1000 array radiating elements and is designed to be within 200mm diameter. We optimized the spacing of radiating elements to allow beem steering above ${\pm}55$ degrees of Field of view, and analyzed the performance of antenna. We confirmed that the Effective Isotropic Radiated Power (EIRP) of the antenna can be 94.22 dBm and receive G/T can be 1.68 dB/k through the designs of RF components and the verification of RF budget. The TX output of TR Module is designed to be over 1.3W for EIRP, and Receive noise figure of TR Module is designed to be less than 5dB for G/T.

Near-Field Rx-Measurement for Active Phased Array of Digital Radar Using Calibration Path (보정 경로를 활용한 디지털 레이더의 능동 위상 배열 근접전계 수신시험)

  • Yu, Je-Woo;Chae, Heeduck;Park, Jongkuk;Lim, Jae-Hwan;Kim, Duckhwan;Jin, Hyoung-Seog;Kim, Han-Saeng
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.504-511
    • /
    • 2016
  • In this paper, the method is proposed that the equivalent result can be obtained by compensating the variation of gain and phase in the comparison with the result of near-field measurement which is obtained in the steady state, although the gain and phase variation of rx-channels occurred in the near-field rx-measurement of digital active phased array antenna. The proposed concept has the time section for monitoring the state of the rx-channels through the calibration path in the measurement timeline, and is the method for compensating the variation of state. For validating the proposed method, the fabricated X-band digital active phased array antenna and the planar near-field measurement facility is utilized. The proposed method is validated in the comparison with the compensated pattern which the unstable state of rx-channels is calibrated and the reference pattern obtained under the steady state of the rx-channels.

Development of Planar Active Phased Array Antenna for Detecting and Tracking Radar (화포탐지 레이다용 C-대역 평면형 능동위상배열 안테나 개발)

  • Kim, Ki-Ho;Kim, Hyun;Kim, Dong-Yoon;Jin, Hyung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.924-934
    • /
    • 2018
  • This paper describes the development and measurement results of C-band planar active phase array antenna for detecting and tracking radar(weapon-locating radar). The antenna is designed with 14 sub-arrays(12 main channels and 2 sidelobe blanking channels and approximately 3,000 elements of transmit-receive channel) to generate transmit and digital receive patterns. Using a near-field measurements facility, G/N, transmit patterns, and received patterns are measured. Receive patterns are implemented with digital beamforming by signal processing. The measurement results demonstrate that antenna design specifications were fulfilled.

Dual Polarized Array Antenna for S/X Band Active Phased Array Radar Application

  • Han, Min-Seok;Kim, Ju-Man;Park, Dae-Sung;Kim, Hyoung-Joo;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A dual-band dual-polarized microstrip antenna array for an advanced multi-function radio function concept (AMRFC) radar application operating at S and X-bands is proposed. Two stacked planar arrays with three different thin substrates (RT/Duroid 5880 substrates with $\varepsilon_r$=2.2 and three different thicknesses of 0.253 mm, 0.508 mm and 0.762 mm) are integrated to provide simultaneous operation at S band (3~3.3 GHz) and X band (9~11 GHz). To allow similar scan ranges for both bands, the S-band elements are selected as perforated patches to enable the placement of the X-band elements within them. Square patches are used as the radiating elements for the X-band. Good agreement exists between the simulated and the measured results. The measured impedance bandwidth (VSWR$\leq$2) of the prototype array reaches 9.5 % and 25 % for the S- and X-bands, respectively. The measured isolation between the two orthogonal polarizations for both bands is better than 15 dB. The measured cross-polarization level is ${\leq}-21$ dB for the S-band and ${\leq}-20$ dB for the X-band.