• Title/Summary/Keyword: Plains

Search Result 251, Processing Time 0.025 seconds

Integrating Impact Assessment into the Policy Process: The Case of Energy Resource Development in North Dakota (정책과정에서 환경영향평가 통합)

  • Leistritz, F. Larry
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.15-24
    • /
    • 1994
  • The goal of impact studies (e.g., as mandated by NEPA in the USA) is to ensure that the full implications of development proposals (ecologic, economic, and social) are taken into account before decisions are made and projects are allowed to proceed. In other words, the aim is to ensure that impact assessment is integrated into planning and policy processes. Today. nearly 25 years after the enactment of NEPA, it is appropriate to inquire regarding the extent of progress toward such integration. This paper examines the role of impact assessment in planning and policy processes with specific reference to resource development projects in the Great Plains region of the USA. The author gives special attention to the socioeconomic impacts associated with energy resource extraction and conversion projects and the role of impact assessment in project evaluation, in local and regional planning, and in state policy development.

  • PDF

Use of GIS to Develop a Multivariate Habitat Model for the Leopard Cat (Prionailurus bengalensis) in Mountainous Region of Korea

  • Rho, Paik-Ho
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • A habitat model was developed to delineate potential habitat of the leopard cat (Prionailurus bengalensis) in a mountainous region of Kangwon Province, Korea. Between 1997 and 2005, 224 leopard cat presence sites were recorded in the province in the Nationwide Survey on Natural Environments. Fifty percent of the sites were used to develop a habitat model, and the remaining sites were used to test the model. Fourteen environmental variables related to topographic features, water resources, vegetation and human disturbance were quantified for 112 of the leopard cat presence sites and an equal number of randomly selected sites. Statistical analyses (e.g., t-tests, and Pearson correlation analysis) showed that elevation, ridges, plains, % water cover, distance to water source, vegetated area, deciduous forest, coniferous forest, and distance to paved road differed significantly (P < 0.01) between presence and random sites. Stepwise logistic regression was used to develop a habitat model. Landform type (e.g., ridges vs. plains) is the major topographic factor affecting leopard cat presence. The species also appears to prefer deciduous forests and areas far from paved roads. The habitat map derived from the model correctly classified 93.75% of data from an independent sample of leopard cat presence sites, and the map at a regional scale showed that the cat's habitats are highly fragmented. Protection and restoration of connectivity of critical habitats should be implemented to preserve the leopard cat in mountainous regions of Korea.

The application of a digital relief model to landform classification (LANDFORM 분류를 위한 수치기복모형의 적용)

  • Yang, In-Tae;Kim, Dong-Moon;Yu, Young-Geol;Chun, Ki-Sun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.155-162
    • /
    • 1999
  • In the last few years the automatic classification of morpholgical landforms using GSIS and DEM was investigated. Particular emphasis has been put on the morphological point attribute approaches and the extraction of drainage basin variables from digital elevation models. The automated derivation of landforms has become a neccessity for quantitative analysis in geomorphology. Furthermore, the application of GSIS technologies has become an important tool for data management and numerical data analysis for purpose of geomorphological mapping. A process developed by Dikau et al, which automates Hanmond's manual process, was applied to the pyoung chang of the kangwon. Although it produced a classification that has good resemblance to the landforms in the area, it had some problems. For example, it produced a progressive zonation when landform changes from plains to mountains, it does not distinguish open valleys from a plains mountain interface, and it was affected by micro relief. Although automating existing quantitative manual processes is an important step in the evolution automation, definition may need to be calibrated since the attributes are oftem measured differently. A new process is presented that partly solves these problems.

  • PDF

A Time Budget Study of Wintering Mallards on the Southern High Plains of Texas, USA

  • Lee, Sang-Don
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.571-576
    • /
    • 1997
  • The playas of the Southern High Plains (SHP) of Texas, USA are an important habitat for over one million wintering waterfowl. However, the recent trend toward the modification of playas for agricultural use is threatening winter habitat of waterfowl in this region. Diurnal activity budgets of wintering mallards (Anas platyrhynchos) were conducted from 1 October to 31 March, 1983-1984, and 1984-1985) at three habitat types; steep-sided pits, terraced pits, and open lakes. All seven activity patterns (feeding, locomotion, resting, comfort, courtship, alert, and agonistic) were different (P<0.05) among the three habitat types for wintering mallards on the SHP of Texas. Terraced pits supported more feeding activity (27.8%) (P<0.001) than steep-sided pits (11.2%) or open lakes (2.6%) due to their abundance of natural seeds and aquatic invertebrates. Hens (17.5%) fed more than drakes (11.7%) (P<0.05). Locomotion (32.2%) and alert (2.8%) behavior across the three habitat types showed the highest level during the early morning (6:00-9:00 AM). Paired mallards rested more (37.9%) than unpaired mallards (25.8%) (P<0.05). Agonistic activity was highest (2.4%) in terraced pits throughout the season.

  • PDF

Farm-level Assessment of Rice Direct-Seeding Practices in Chonbuk Province

  • Dong Kyun;Song Joong;Jung Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.335-338
    • /
    • 2000
  • The technology of direct-seeding in rice cultivation is an innovation mainly induced by factors in market economy and is rapidly diffused among individual farmhouses. Because the effect of technology can be affected by many factors under various farming circumstances, the impact and stability of the direct-seeding technology compared with transplanting was analyzed under various topographical regions. Yield in direct-seeding was higher in plains, although the farm size producing higher yield was quite different depending on the topographical regions. In the direct-seeding cultivation of rice, man-labor hours was reduced by about 38 percent and the reduction rate showed little difference among topographical regions. Fertilizer was used about 11 percent more but the increase rate varied from 3 to 17 percent depending on regions with higher rates in plains. Application of agricultural chemicals was also increased about 9 percent in direct-seeding, but the increase rate was as high as 12 percent in suburbs. More fertilizer and agricultural chemicals were used in direct-seeding cultivation by farmhouses implementing both direct-seeding and transplanting than by those implementing direct-seeding only. Use of more fertilizers and agricultural chemicals in direct-seeding in all regions may indicate its technical instability. Major problems causing the technical instability of direct-seeding cultivation should be solved by comprehensive research considering various farming circumstances such as topographical features rather than just a top-down style research and extension.

  • PDF

Projection of Paddy Rice Consumptive Use in the Major Plains of the Korean Peninsula under the RCP Scenarios (대표농도경로 시나리오에 의한 한반도 주요 평야지역 논벼 소비수량 추정)

  • Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.35-41
    • /
    • 2012
  • The paddy rice consumptive use in the six plains of the Korean peninsula was projected with changing climate under the representative concentration pathway (RCP) scenarios. High resolution climate data for the baseline (1961-1990) was obtained from the International water management institute (IWMI) and future high resolution climate projection was obtained from the Korea Meteorological Administration. Reference evapotranspiration (ET) was calculated by using Hargreaves equation. The results of this study showed that the average annual mean temperature would increase persistently in the future. Temperatures were projected to increase more in RCP8.5 than those in RCP4.5 scenario. The rice consumptive use during the growing period was projected to increase slightly in the 2020s and then more significantly in the 2050s and 2080s. It showed higher values for RCP8.5 than for RCP4.5. The rice consumptive use after transplanting in the study areas would increase by 2.2 %, 5.1 % and 7.2 % for RCP4.5 and 3.0 %, 7.6 %, and 13.3 % for RCP8.5, in the 2020s, 2050s, and 2080s, respectively, from the baseline value of 534 mm. The results demonstrated the effects of climate change on rice consumptive use quite well, and can be used in the future agricultural water planning in the Korean peninsula.

Characterization of Convective Weather Systems in the Middle Himalaya during 1999 and 2000 Summer Monsoons (1999년과 2000년 여름몬순기간 동안 히말라야 지역에 발생한 대류계의 특성에 관한 연구)

  • Kim, Gwang-Seob;Noh, Joon-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.495-505
    • /
    • 2003
  • Convective weather systems such as organized mesoscale convective systems (Mesoscale Convective Complex, MCC and Convective Cloud Clusters, CCC) and much weaker Disorganized Short-lived Convection (DSC) in the region of India and Nepal were analyzed using the Meteosat-5 IR imagery. The diurnal march and propagation of patterns of convective activity in the Himalayas and Northern Indian subcontinent were examined. Results indicate that infrared satellite images of Northern India and along the southern flank of the Himalayas reveal a strong presence of convective weather systems during the 1999 and 2000 monsoons, especially in the afternoon and during the night. The typical MCCs have life-times of about 11 hours, and areal extent about $300,000km^2$. Although the core of MCC activity remains generally away from the Middle Himalayan range, the occurrence of heavy precipitation events in this region can be directly linked to MCCs that venture into the Lesser Himalayan region and remain within the region bounded by $25^{\circ}-30^{\circ}N$. One principal feature in the spatial organization of convection is the dichotomy between the Tibetan Plateau and the Northern Indian Plains: CCCs and DSCs begin in the Tibetan Plateau in the mid-afternoon into the evening; while they are most active in the mid-night and early morning in the Gangetic Plains and along the southern facing flanks of the Himalayas. Furthermore, these data are consistent with the daily cycle of rainfall documented for a network of 20 hydrometeorological stations in Central Nepal, which show strong nocturnal peaks of intense rainfall consistent with the close presence of Convective Weather Systems (CWSs) in the Gangetic Plains (Barros et al. 2000).

Evaluation of Site-Specific Seismic Amplification Characteristics in Plains of Seoul Metropolitan Area (서울 평야 지역에 대한 부지 고유의 지진 증폭 특성 평가)

  • Sun, Chang-Guk;Yang, Dae-Sung;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.29-42
    • /
    • 2005
  • Total 350 borehole profiles were selected from the database of borehole logs in Seoul, for the site-specific seismic evaluation at two 4km${\times}$4km plain areas. Equivalent-linear site response analyses for the selected 350 sites were conducted based on shear wave velocity (Vs) Profiles, which were determined from the N-Vs correlation established using borehole seismic testing results in the inland areas of Korea. Most sites were categorized as site classes C and D based on the mean Vs to 30 m in depth (Vs30) ranging from 250 to 550 m/s. The she periods of the plains in Seoul ranging between 0.1 and 0.4 sec were significantly lower than those of the western US, from which the site coefficients in Korea were derived. For plains in Seoul, the site coefficients, Fa's and Fv's specified in the Korean seismic design guide, underestimate the ground motion in short-period (0.1-0.5 sec) band and overestimate the ground motion in mid-period (0.4-2.0 sec) band, respectively, because ol the differences in the geotechnical conditions between Seoul and the western US, although the Fa's in several sites overestimate the motion due to the base Isolation effect resulted from the soft layer in soil deposit.

A Study on the Characteristics of Consolidation Settlement of Soft Ground in the Plains of the Central Region (중부지방 평야지역의 연약지반에 대한 압밀침하특성 분석 연구)

  • Joon-Seok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.706-712
    • /
    • 2022
  • Purpose: In this study, field experimental research was conducted to analyze the settlement characteristics of soft ground in the central inland region of Korea and use it in practice. Method: The design predicted values and comparative analysis were performed using the ten settlement measurement data actually measured in the field experiment. For the design prediction value, Terzaghi's one-dimensional consolidation settlement analysis was used. In the experiment, the surface subsidence plate was used for field measurement. Result: The settlement behavior of the predicted value and the actual value was generally similar, but in the settlement value, the actual settlement value showed a settlement behavior of 30% or less compared to the predicted settlement value. The rate of consolidation settlement in this study area was in the range of 9.6% to 27.0%, and the average value was 18.21%. It is analyzed that the prediction of the settlement amount of the silty soils distributed in the inland plains of the central region of Korea can be relatively overestimated. Conclusion: It is judged that precise ground investigation and detailed prediction are necessary because there is a possibility of over-design in the design for predicting the amount of settlement of the silty soils distributed in the inland plains of the central region of Korea.

Comparison of Lambertian Model on Multi-Channel Algorithm for Estimating Land Surface Temperature Based on Remote Sensing Imagery

  • A Sediyo Adi Nugraha;Muhammad Kamal;Sigit Heru Murti;Wirastuti Widyatmanti
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.397-418
    • /
    • 2024
  • The Land Surface Temperature (LST) is a crucial parameter in identifying drought. It is essential to identify how LST can increase its accuracy, particularly in mountainous and hill areas. Increasing the LST accuracy can be achieved by applying early data processing in the correction phase, specifically in the context of topographic correction on the Lambertian model. Empirical evidence has demonstrated that this particular stage effectively enhances the process of identifying objects, especially within areas that lack direct illumination. Therefore, this research aims to examine the application of the Lambertian model in estimating LST using the Multi-Channel Method (MCM) across various physiographic regions. Lambertian model is a method that utilizes Lambertian reflectance and specifically addresses the radiance value obtained from Sun-Canopy-Sensor(SCS) and Cosine Correction measurements. Applying topographical adjustment to the LST outcome results in a notable augmentation in the dispersion of LST values. Nevertheless, the area physiography is also significant as the plains terrain tends to have an extreme LST value of ≥ 350 K. In mountainous and hilly terrains, the LST value often falls within the range of 310-325 K. The absence of topographic correction in LST results in varying values: 22 K for the plains area, 12-21 K for hilly and mountainous terrain, and 7-9 K for both plains and mountainous terrains. Furthermore, validation results indicate that employing the Lambertian model with SCS and Cosine Correction methods yields superior outcomes compared to processing without the Lambertian model, particularly in hilly and mountainous terrain. Conversely, in plain areas, the Lambertian model's application proves suboptimal. Additionally, the relationship between physiography and LST derived using the Lambertian model shows a high average R2 value of 0.99. The lowest errors(K) and root mean square error values, approximately ±2 K and 0.54, respectively, were achieved using the Lambertian model with the SCS method. Based on the findings, this research concluded that the Lambertian model could increase LST values. These corrected values are often higher than the LST values obtained without the Lambertian model.