• Title/Summary/Keyword: Pizoelectric materials

Search Result 6, Processing Time 0.019 seconds

a study on the Electrical and acoustical properties of PZT ceramic. (PZT 계 압전세라믹스의 전기 및 음향특성에 관한 연구)

  • Kim, S.J.;Kim, H.G.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.333-334
    • /
    • 1989
  • Electrically active part of the piezoelectric sound element is a ceramic thin circular disk cemented to a metal base plate (using a type of thermosetting epoxy). The active part is a thin lead zirconate titanate disk (PZT). The piezoelectric sound element is so dimensioned that its basic resonance frequency is approximately if the center of the audible frequency band: This frequency is mainly determined by the geometry and the sort of the metal base plate materials. In this study, four kinds of PZT ceramic and two classes of thin metal base plate were prepared. It is observed that dielectric and pizoelectric properties relate to acoustical properties (particularly sound pressure level).

  • PDF

Elastodynamic Control of Industrial Robotic Manipulators Using Piezoelectric Materials (압전재료를 이용한 산업용 로보트 매니퓰레이터의 동탄성 제어)

  • Choi, S.B.;Cheong, C.C.;Choi, I.S.;Lee, T.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.54-63
    • /
    • 1993
  • This paper presents the dynamic modeling and control methodology to arrest structural deflections of industrial robotic manipulators featuring elastic members retrofitted with surface bonded pizoelectric actuators and sensors. The cynamic modeling is accomplished by employing a variational theorem, prior to developing a finite element formulation. This finite element formulation accounts for both original robot member elements and also bonded piezoelectric material elements. The governing equation of motion is then modified by condensing the electric potential vectors and subsequently two different negative velocity feedback controllers are established; a constant-gain feedback controller and a constant- amplitude feedback controller. By adopting a Model P50 articulating industrial robot manufactured by Gerneral Electric Company, conputer simulations are underlaken in order to demonstrate superior performance characteristics to be accrued from this proposed methodology such as smaller deflections at the end-effector.

  • PDF

Effects of Bi(Mg1/2Sn1/2)O3 Modification on the Dielectric and Piezoelectric Properties of Bi1/2(Na0.8K0.2)1/2TiO3 Ceramics (Bi1/2(Na0.8K0.2)1/2TiO3 세라믹스의 유전 및 압전 특성에 대한 Bi(Mg1/2Sn1/2)O3 변성 효과)

  • Pham, Ky Nam;Dinh, Thi Hinh;Lee, Hyun-Young;Kong, Young-Min;Lee, Jae-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • The effect of $Bi(Mg_{1/2}Sn_{1/2})O_3$ (BMS) modification on the crystal structure, ferroelectric and piezoelectric properties of $Bi_{1/2}(Na_{0.8}K_{0.2})_{1/2}TiO_3$ (BNKT) ceramics has been investigated. The BMS-substitution induced a transition from a ferroelectric (FE) tetragonal to a nonpolar pseudocubic phase, leading to degradations in the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electric-field-induced strain was significantly enhanced by the BMS substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 633 pm/V under an applied electric field of 6 kV/mm when the BMS content reached 6 mol%. The abnormal enhancement in strain was attributed to the field-induced transition of the pseudocubic symmetry to other asymmetrical structure, which was not clarified in this work.

Low Temperature Sintering of Lead-Free Bi1/2Na1/2TiO3-SrTiO3 Piezoceramics by Li2CO3-B2O3 Addition (Li2CO3와 B2O3를 첨가한 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 저온 소성 연구)

  • Lee, Sang Sub;Park, Young-Seok;Duong, Trang An;Devita, Mukhlishah Aisyah;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • This study investigated microstructures, crystal structures, polarization, dielectric and electromechanical properties of 0.76Bi1/2Na1/2TiO3-0.24SrTiO3 (BNT-24ST)-based piezoceramcs by adding Li2CO3 and B2O3 (LB) as sintering aids for low-temperature sintering. All samples were successfully synthesized using conventional solid-state reaction method and sintered at 950, 1,000, 1,050, 1,100 and 1,175℃ for 2 hours. Without LB, specimens required sintering temperatures over 1,175℃ for sufficient densification, while the addition of 0.10-mol LB decreased the sintering temperatures down to 950℃. The average grain size and dielectric properties of BNT-24ST-10LB ceramics were enhanced with increasing sintering temperature. We found that the low-temperature sintered BNT-24ST piezoceramics by adding LB showed the d33*value of 402 pm/V at 4 kV/mm after sintering at 1,050℃, which was better than that of high-temperature fired specimens sintered at 1,175℃ without LB (242 pm/V). We believe that the results of this study promise a candidate for low-cost multilayer ceramic actuator applications.

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF