• Title/Summary/Keyword: Pixel-frequency method

Search Result 113, Processing Time 0.029 seconds

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

Baseline Correction in Computed Radiography Images with 1D Morphological Filter (CR 영상에서 기저선 보정을 위한 1차원 모폴로지컬 필터의 이용에 관한 연구)

  • Kim, Yong-Gwon;Ryu, Yeunchul
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.397-405
    • /
    • 2022
  • Computed radiography (CR) systems, which convert an analog signal recorded on a cassette into a digital image, combine the characteristics of analog and digital imaging systems. Compared to digital radiography (DR) systems, CR systems have presented difficulties in evaluating system performance because of their lower detective quantum efficiency, their lower signal-to-noise ratio (SNR), and lower modulation transfer function (MTF). During the step of energy-storing and reading out, a baseline offset occurs in the edge area and makes low-frequency overestimation. The low-frequency offset component in the line spread function (LSF) critically affects the MTF and other image-analysis or qualification processes. In this study, we developed the method of baseline correction using mathematical morphology to determine the LSF and MTF of CR systems accurately. We presented a baseline correction that used a morphological filter to effectively remove the low-frequency offset from the LSF. We also tried an MTF evaluation of the CR system to demonstrate the effectiveness of the baseline correction. The MTF with a 3-pixel structuring element (SE) fluctuated since it overestimated the low-frequency component. This overestimation led the algorithm to over-compensate in the low-frequency region so that high-frequency components appeared relatively strong. The MTFs with between 11- and 15-pixel SEs showed little variation. Compared to spatial or frequency filtering that eliminated baseline effects in the edge spread function, our algorithm performed better at precisely locating the edge position and the averaged LSF was narrower.

Effect of Bead Device Diameter on Z-Resolution Measurement in Tomosynthesis Images: A Simulation Study

  • Ryohei Fukui;Miho Numata;Saki Nishioka;Ryutarou Matsuura;Katsuhiro Kida;Sachiko Goto
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.63-71
    • /
    • 2022
  • Purpose: To clarify the relationship between the diameter of the simulated bead and the Z-resolution of the tomosynthesis image. Methods: A simulated bead was placed on a 1,024×1,024×1,024-pixel base image. The diameters were set to 0.025, 0.05, 0.1, 0.2, 0.3, 0.7, 1.0, and 1.3 mm. A bead was placed at the center of the base image and projected at a simulated X-ray angle range of ±45° to obtain a projected image. A region of interest was placed at the center of the bead image and the slice sensitivity profile (SSP) was obtained by acquiring pixel values in the z-direction. The full width at half maximum of the SSP was defined as the Z-resolution and the frequency response was obtained by the 1-D Fourier transform of the SSP. Results: Z-resolution increased with increasing bead diameter. However, there was no change in Z-resolution between 0.025 and 0.1 mm. The frequency response was similar to that of the Z-resolution, with a significant difference between 0.1 and 0.2 mm diameter. Conclusions: Z-resolution is dependent on the diameter of the bead, which should be selected considering the pixel size of the tomosynthesis image.

Modified Weight Filter Algorithm using Pixel Matching in AWGN Environment (AWGN 환경에서 화소매칭을 이용한 변형된 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1310-1316
    • /
    • 2021
  • Recently, with the development of artificial intelligence and IoT technology, the importance of video processing such as object tracking, medical imaging, and object recognition is increasing. In particular, the noise reduction technology used in the preprocessing process demands the ability to effectively remove noise and maintain detailed features as the importance of system images increases. In this paper, we provide a modified weight filter based on pixel matching in an AWGN environment. The proposed algorithm uses a pixel matching method to maintain high-frequency components in which the pixel value of the image changes significantly, detects areas with highly relevant patterns in the peripheral area, and matches pixels required for output calculation. Classify the values. The final output is obtained by calculating the weight according to the similarity and spatial distance between the matching pixels with the center pixel in order to consider the edge component in the filtering process.

Noise reduction method using a variance map of the phase differences in digital holographic microscopy

  • Hyun-Woo Kim;Myungjin Cho;Min-Chul Lee
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.131-137
    • /
    • 2023
  • The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatialfrequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages.

Video Segmentation and Key frame Extraction using Multi-resolution Analysis and Statistical Characteristic

  • Cho, Wan-Hyun;Park, Soon-Young;Park, Jong-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.457-469
    • /
    • 2003
  • In this paper, we have proposed the efficient algorithm that can segment the video scene change using a various statistical characteristics obtained from by applying the wavelet transformation for each frames. Our method firstly extracts the histogram features from low frequency subband of wavelet-transformed image and then uses these features to detect the abrupt scene change. Second, it extracts the edge information from applying the mesh method to the high frequency subband of transformed image. We quantify the extracted edge information as the values of variance characteristic of each pixel and use these values to detect the gradual scene change. And we have also proposed an algorithm how extract the proper key frame from segmented video scene. Experiment results show that the proposed method is both very efficient algorithm in segmenting video frames and also is to become the appropriate key frame extraction method.

A New Performance Assesment Methods for Interpolated Image Enlargement (화면확대를 위한 보간 방식의 새로운 성능 평가 방법)

  • 은진화;조화현;권병헌;최명렬
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.58-61
    • /
    • 2000
  • In this paper, we propose a new performance comparison method of various Interpolation methods for image enlargement The conventional methods employs PSNR and edge characteristic evaluation for performance comparison of interpolation methods. The proposed performance comparison method uses the position Information for each difference pixel's value and the frequency characteristic information between original image and Interpolated image. The proposed methods might be useful for performance comparison of various Interpolation methods through the computer simulation.

  • PDF

Measurement of Low-Frequency Vibrations of Structures Using the Image Processing Method (영상 처리 방법을 이용한 구조물의 저주파수 진동 계측)

  • Kim, Ki-Young;Kwak, Moon- K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.503-507
    • /
    • 2004
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we discuss the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The resolution of the vibration measurement can be refined but limited to the sub centimeter displacement.

  • PDF

Mapping Topography Change via Multi-Temporal Sentinel-1 Pixel-Frequency Approach on Incheon River Estuary Wetland, Gochang, Korea (다중시기 Sentinel-1 픽셀-빈도 기법을 통한 고창 인천강 하구 습지의 지형 변화 매핑)

  • Won-Kyung Baek;Moung-Jin Lee;Ha-Eun Yu;Jeong-Cheol Kim;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1747-1761
    • /
    • 2023
  • Wetlands, defined as lands periodically inundated or exposed during the year, are crucial for sustaining biodiversity and filtering environmental pollutants. The importance of mapping and monitoring their topographical changes is therefore paramount. This study focuses on the topographical variations at the Incheon River estuary wetland post-restoration, noting a lack of adequate prior measurements. Using a multi-temporal Sentinel-1 dataset from October 2014 to March 2023, we mapped long-term variations in water bodies and detected topographical change anomalies using a pixel-frequency approach. Our analysis, based on 196 Sentinel-1 acquisitions from an ascending orbit, revealed significant topography changes. Since 2020, employing the pixel-frequency technique, we observed area increases of +0.0195, 0.0016, 0.0075, and 0.0163 km2 in water level sections at depths of 2-3 m, 1-2 m, 0-1 m, and less than 0 m, respectively. These findings underscore the effectiveness of the wetland restoration efforts in the area.

Deep Learning-based Super Resolution Method Using Combination of Channel Attention and Spatial Attention (채널 강조와 공간 강조의 결합을 이용한 딥 러닝 기반의 초해상도 방법)

  • Lee, Dong-Woo;Lee, Sang-Hun;Han, Hyun Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.15-22
    • /
    • 2020
  • In this paper, we proposed a deep learning based super-resolution method that combines Channel Attention and Spatial Attention feature enhancement methods. It is important to restore high-frequency components, such as texture and features, that have large changes in surrounding pixels during super-resolution processing. We proposed a super-resolution method using feature enhancement that combines Channel Attention and Spatial Attention. The existing CNN (Convolutional Neural Network) based super-resolution method has difficulty in deep network learning and lacks emphasis on high frequency components, resulting in blurry contours and distortion. In order to solve the problem, we used an emphasis block that combines Channel Attention and Spatial Attention to which Skip Connection was applied, and a Residual Block. The emphasized feature map extracted by the method was extended through Sub-pixel Convolution to obtain the super resolution. As a result, about PSNR improved by 5%, SSIM improved by 3% compared with the conventional SRCNN, and by comparison with VDSR, about PSNR improved by 2% and SSIM improved by 1%.