• Title/Summary/Keyword: Pixel correlation

Search Result 211, Processing Time 0.023 seconds

A Study on Improvement in Digital Image Restoration by a Recursive Vector Processing (순환벡터처리에 의한 디지털 영상복원에 관한 연구)

  • 이대영;이윤현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.3
    • /
    • pp.105-112
    • /
    • 1983
  • This paper discribes technique of the recursive restoration for the images degraded by linear space invariant blur and additive white Gaussian noise. The image is characterized statistically by tis mean and correlation function. An exponential autocorrelation function has been used to model neighborhood model. The vector model was used because of analytical simplicitly and capability to implement brightness correlation function. Base on the vector model, a two-dimensional discrete stochastic a 12 point neighborhood model for represeting images was developme and used the technique of moving window processing to restore blurred and noisy images without dimensionality increesing, It has been shown a 12 point neighborhood model was found to be more adequate than a 8 point pixel model to obtain optimum pixel estimated. If the image is highly correlated, it is necessary to use a large number of points in the neighborhood in order to have improvements in restoring image. It is believed that these result could be applied to a wide range of image processing problem. Because image processing thchniques normally required a 2-D linear filtering.

  • PDF

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Study on Improvement of Measurement Precision in Digital Image Correlation Measurement Method by Using Subpixel Algorithms (이미지 상관법의 서브 픽셀 알고리즘을 이용한 측정 분해능 향상에 관한 연구)

  • Kim, Seung Jong;Kang, Young Jun;Choi, In Young;Hong, Kyung Min;Ryu, Won Jea
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1039-1047
    • /
    • 2015
  • Contact type sensors (e.g., displacement sensor and strain gauge) were typically used to evaluate the safety and mechanical properties in machines and construction. However, those contact type sensors have been constrained because of measurement problems such as surface roughness, temperature, humidity, and shape. The Digital Image Correlation (DIC) measurement system is a vision measurement system. This measurement system uses the taken image using a CCD camera and calculates the image correlation between the reference image and the deformed image under external force to measure the displacement and strain rates. In this paper, we discuss methods to improve the measurement precision of the digital image correlation measurement system. A tensile test was conducted to compare the precision improvement effects, by using the universal test machine and the DIC measurement system, with the use of subpixel algorithms, i.e., the Coarse Fine Search (CFS) algorithm and the Peak Finding (PF) algorithm.

Normalized Cross Correlation-based Multiview background Subtraction for 3D Object Reconstruction (3차원 객체 복원을 위한 정규 상관도 기반 다중 시점 배경 차분 기법)

  • Paeng, Kyunghyun;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Sujung;Yoo, Jisung;Kim, Seong Dae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.228-237
    • /
    • 2013
  • In this paper, we propose a normalized cross correlation(NCC)-based multiview background subtraction method which is robust when an object and background have similar color. When the background of the capturing environment is not artificially composed, the regions in the background images which would be occluded by an object tends to have difference colors. The colors of those regions, however, becomes similar when an object enters the capturing environment. Based on this assumption, this paper proposes a concept of GoNCC(Graph of Normalized Cross Correlation). GoNCC is the distribution of NCC between a pixel in an image and pixels related by epipolar constraints with the pixel. The proposed multiview background subtraction method is performed by comparing GoNCC of the current images with the background images. To reduce computational complexity, we perform multiview background subtraction only to the pixels undetermined by single view background subtraction. Experimental results show that the proposed method is more robust to color similarity between an object and background than a single-view background subtraction method and a previous multiview background subtraction method.

Spatially Adaptive Image Fusion Based on Local Spectral Correlation (지역적 스펙트럼 상호유사성에 기반한 공간 적응적 영상 융합)

  • 김성환;박종현;강문기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2343-2346
    • /
    • 2003
  • The spatial resolution of multispectral images can be improved by merging them with higher resolution image data. A fundamental problem frequently occurred in existing fusion processes, is the distortion of spectral information. This paper presents a spatially adaptive image fusion algorithm which produces visually natural images and retains the quality of local spectral information as well. High frequency information of the high resolution image to be inserted to the resampled multispectral images is controlled by adaptive gains to incorporate the difference of local spectral characteristics between the high and the low resolution images into the fusion. Each gain is estimated to minimize the l$_2$-norm of the error between the original and the estimated pixel values defined in a spatially adaptive window of which the weight are proportional to the spectral correlation measurements of the corresponding regions. This method is applied to a set of co-registered Landsat7 ETM+ panchromatic and multispectral image data.

  • PDF

Methods and Systems for High-temperature Strain Measurement of the Main Steam Pipe of a Boiler of a Power Plant While in Service

  • Guang, Chen;Qibo, Feng;Keqin, Ding
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.770-777
    • /
    • 2016
  • It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than $0.4ppm/^{\circ}C$, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.

Correlation Analysis between Crack Depth of Concrete and Characteristics of Images (콘크리트 균열 깊이와 이미지 특성정보간의 상관성 분석)

  • Jung, Seo-Young;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.162-163
    • /
    • 2021
  • Currently, the depth of cracks is measured using ultrasonic detectors in maintenance practice. This method consists of measuring the depth of cracks by attaching ultrasonic depth measuring equipment to the concrete surface, and there are restrictions on the timing and location of the inspection. These limitations can be addressed through the development of image-based crack depth measurement AI technology. If crack depth measurements are made based on images, restrictions on the timing and location of inspections can be lifted because images acquired with simple filming equipment can be used as input information. To efficiently develop these artificial intelligence technologies, it is essential to identify the interrelationship between crack depth measurements and image characteristic information. Thus, this study is a basic study of the development of image-based crack depth measurement AI technology and aims to identify image characteristic information related to crack depth.

  • PDF

Effective MCTF based on Correlation Improvement of Motion Vector Field (움직임 벡터 필드의 상관도 향상을 통한 효과적인 MCTF 방법)

  • Kim, Jongho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1187-1193
    • /
    • 2014
  • This paper presents an effective motion estimation to improve the performance of the motion compensated temporal filtering (MCTF) which is a core part of the wavelet-based scalable video coding. The proposed scheme makes the motion vector field uniform by the modified median operation and the search strategies using adjacent motion vectors, in order to enhance the pixel connectivity which is significantly relevant to the performance of the MCTF. Moreover, the motion estimation with variable block sizes that reflects the features of frames is introduced for further correlation improvement of the motion vector field. Experimental results illustrate that the proposed method reduces the decomposed energy on the temporal high frequency subband frame up to 30.33% in terms of variance compared to the case of the full search with fixed block sizes.

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

A Stereo Matching Technique using Multi-directional Scan-line Optimization and Reliability-based Hole-filling (다중방향성 정합선 최적화와 신뢰도 기반 공백복원을 이용한 스테레오 정합)

  • Baek, Seung-Hae;Park, Soon-Young
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.115-124
    • /
    • 2010
  • Stereo matching techniques are categorized in two major schemes, local and global matching techniques. In global matching schemes, several investigations are introduced, where cost accumulation is performed in multiple matching lines. In this paper, we introduce a new multi-line stereo matching techniques which expands a conventional single-line matching scheme to multiple one. Matching cost is based on simple normalized cross correlation. We expand the scan-line optimization technique to a multi-line scan-line optimization technique. The proposed technique first generates a reliability image, which is iteratively updated based on the previous reliability measure. After some number of iterations, the reliability image is completed by a hole-filling algorithm. The hole-filling algorithm introduces a disparity score table which records the disparity score of the current pixel. The disparity of an empty pixel is determined by comparing the scores of the neighboring pixels. The proposed technique is tested using the Middlebury and CMU stereo images. The error analysis shows that the proposed matching technique yields better performance than using conventional global matching algorithm.