• Title/Summary/Keyword: Pixel correlation

Search Result 211, Processing Time 0.024 seconds

Moving Pixel Displacement Detection using Correlation Functions on CIS Image

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.349-354
    • /
    • 2010
  • Moving pixel displacement detection algorithm using correlation functions for making panorama image on the continuous images is presented in this paper. The input images get from a CMOS image sensor (CIS). The camera is maintained by constant brightness and uniform sensing area in test input pattern. For simple navigation and capture image has to 70% overlapped region. A correlation rate in two image data is evaluated by using reference image with first captures, and compare image with next captures. The displacement of the two images are expressed to second order function of x, y and solved with finding the coefficient in second order function. That results in the change in the peak correlation displacement from the reference to the compare image, is moving to pixel length. The navigating error is reduced by varying the path because the error is shown in the difference of the positioning vector between the true pixel position and the navigated pixel position. The algorithm performance is evaluated to be different from the error vector to vary the navigating path grid.

Sub-pixel Evaluation with Frequency Response Analysis

  • OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.14-22
    • /
    • 2001
  • The frequency responses on the sub-pixel evaluation technique were investigated using the Monte-calro Simulation technique. The frequency response by the FFT based cross-correlation gives very good results, however, the gain loss does exist for the small displacement, (less than 0.5 pixel). While, the no gain loss is observed in the Direct Cross-correlation, however, the sub-pixel accuracy was limited to be about 0.1 pixel, i.e., it could not detect the small displacement. To detect the higher accurate sub-pixel displacement, the gradient based technique is the best. For the small interrogation area (e.g., 4x4), only the gradient technique can detect the small displacement correctly.

  • PDF

A Study of Band Characteristic of Color Aerial Photos for Image Matching (영상 정합을 위한 컬러 항공사진의 밴드 특성에 관한 연구)

  • Kim, Jin-Kwang;Lee, Ho-Nam;Hwang, Chul-Sue
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.187-190
    • /
    • 2007
  • This study is for analyzing best band in image matching using correlation coefficient of left and right images of stereo image pair, lot red, green, blue band images separated from color aerial photo and gray image converted from the same color aerial photo image. The image matching is applied to construct Digital Elevation Model(DEM) or terrain data. The correlation coefficients and variation by change of pixel patch size are computed from pixel patches of which sizes are $11{\times}11{\sim}101{\times}101$. Consequently, the correlation coefficient in red band image is highest. The lowest is in blue band. Therefore, to construct terrain data using image matching, the red band image is preferable. As the size of pixel patch is growing, the correlation coefficient is increasing. But increasing rate declines from $51{\times}51$ image patch size and above. It is proved that the smaller pixel patch size than $51{\times}51$ is applied to construct terrain data using image matching.

  • PDF

Modified Multi-Chaotic Systems that are Based on Pixel Shuffle for Image Encryption

  • Verma, Om Prakash;Nizam, Munazza;Ahmad, Musheer
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.271-286
    • /
    • 2013
  • Recently, a pixel-chaotic-shuffling (PCS) method has been proposed by Huang et al. for encrypting color images using multiple chaotic systems like the Henon, the Lorenz, the Chua, and the Rossler systems. All of which have great encryption performance. The authors claimed that their pixel-chaotic-shuffle (PCS) encryption method has high confidential security. However, the security analysis of the PCS method against the chosen-plaintext attack (CPA) and known-plaintext attack (KPA) performed by Solak et al. successfully breaks the PCS encryption scheme without knowing the secret key. In this paper we present an improved shuffling pattern for the plaintext image bits to make the cryptosystem proposed by Huang et al. resistant to chosen-plaintext attack and known-plaintext attack. The modifications in the existing PCS encryption method are proposed to improve its security performance against the potential attacks described above. The Number of Pixel Change Rate (NPCR), Unified Average Changed Intensity (UACI), information entropy, and correlation coefficient analysis are performed to evaluate the statistical performance of the modified PCS method. The simulation analysis reveals that the modified PCS method has better statistical features and is more resistant to attacks than Huang et al.'s PCS method.

SATELLITE ORBIT AND ATTITUDE MODELING FOR GEOMETRIC CORRECTION OF LINEAR PUSHBROOM IMAGES

  • Park, Myung-Jin;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.543-547
    • /
    • 2002
  • In this paper, we introduce a more improved camera modeling method for linear pushbroom images than the method proposed by Orun and Natarajan(ON). ON model shows an accuracy of within 1 pixel if more than 10 ground control points(GCPs) are provided. In general, there is high correlation between platform position and attitude parameters but ON model ignores attitude variation in order to overcome such correlation. We propose a new method that obtains an optimal solution set of parameters without ignoring the attitude variation. We first assume that attitude parameters are constant and estimate platform position's. Then we estimate platform attitude parameters using the values of estimated position parameters. As a result, we can set up an accurate camera model for a linear pushbroom satellite scene. In particular, we can apply the camera model to its surrounding scenes because our model provide sufficient information on satellite's position and attitude not only for a single scene but also for a whole imaging segment. We tested on two images: one with a pixel size 6.6m$\times$6.6m acquired from EOC(Electro Optical Camera), and the other with a pixel size 10m$\times$l0m acquired from SPOT. Our camera model procedures were applied to the images and gave satisfying results. We had obtained the root mean square errors of 0.5 pixel and 0.3 pixel with 25 GCPs and 23 GCPs, respectively.

  • PDF

A study on Improved De-Interlacing Applying Newton Difference Interpolation (Newton 차분법을 이용한 개선된 디인터레이싱 연구)

  • Baek, Kyunghoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.1
    • /
    • pp.449-454
    • /
    • 2020
  • We propose an improved de-interlacing method that converts the interlaced images into the progressive images by one field. In the first, Inter-pixel values are calculated by applying Newton's forward difference, backward difference interpolation from upper and lower 5 pixel values. Using inter-pixel values obtained from upper and lower 5 pixel values, it makes more accurate a direction estimate by applying the correlation between upper and lower pixel. If an edge direction is determined from the correlation, a missing pixel value is calculated into the average of upper and lower pixel obtained from predicted direction of edge. From simulation results, it is shown that the proposed method improves subjective image quality at edge region and objective image quality at 0.2~0.3dB as quantitative calculation result of PSNR, compared to previous various de-interlacing methods.

Research of Phase Correlation Method for Identifying Quantitative Similarity in Adjacent Real-time Streaming Frame

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.157-157
    • /
    • 2017
  • To minimize the damage by wild birds and acquire the benefits such as protection against weeds and maintenance of water content in soil, the mulching black color vinyl after seeding should be carried out. Non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. Non-linear integral interpolation was one of method for analyzing the frequency using the normalization image and then arbitrarily increasing the limited data value of $16{\times}4pixels$ in one frame. It was a method to relatively reduce the size of overlapping pixels by arbitrarily increasing the limited data value. The splitted frames into 0.1 units instead of 1 pixel can propose more than 10 times more accurate and original method than the existing correction method. The non-integral calibration method was conducted by applying the subdivision method to the pixels to find the optimal correction resolution based on the first reversed frequency. In order to find a correct resolution, the expected location of the first crop was indicated on near pixel 4 in the inversion frequency. For the most optimized resolution, the pixel was divided by 0.4 pixel instead of one pixel to find out where the lowest frequency exists.

  • PDF

Half-pixel Accuracy Motion Estimation Using the Correlation of Motion Vectors (움직임벡터의 상관성을 이용한 반화소단위 움직임 추정 기법)

  • Lee, Bub-Ki;Lee, Kyeong-Hwan;Choi, Jung-Hyun;Kim, Duk-Gyoo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.119-126
    • /
    • 1998
  • In this paper, we proposed two new methods of half-pel accuracy motion estimation using spatial correlation of half-pel accuracy motion vectors and stochastic characteristics between pixel accuracy motion vectors and half-pel accuracy motion vectors. We confirmed two facts : One is that the probability of having same half-pel accuracy motion vectors with neighboring blocks is high when having same pixel accuracy motion vectors. And the other is that there is high correlation between neighboring half-pel positions. These new half-pel motion estimation technique are shown to decrease the bit rates for vector coding and computational complexity with similar PSNR.

  • PDF

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.