• Title/Summary/Keyword: Pixel Distribution

Search Result 283, Processing Time 0.027 seconds

Block-based Color Image Segmentation Using Y/C Bit-Plane Sum]nation Image (Y/C 비트 평면합 영상을 이용한 블록 기반 칼라 영상 분할)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2000
  • This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.

  • PDF

Statistical Model of 3D Positions in Tracking Fast Objects Using IR Stereo Camera (적외선 스테레오 카메라를 이용한 고속 이동객체의 위치에 대한 확률모델)

  • Oh, Jun Ho;Lee, Sang Hwa;Lee, Boo Hwan;Park, Jong-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.89-101
    • /
    • 2015
  • This paper proposes a statistical model of 3-D positions when tracking moving targets using the uncooled infrared (IR) stereo camera system. The proposed model is derived from two errors. One is the position error which is caused by the sampling pixels in the digital image. The other is the timing jitter which results from the irregular capture-timing in the infrared cameras. The capture-timing in the IR camera is measured using the jitter meter designed in this paper, and the observed jitters are statistically modeled as Gaussian distribution. This paper derives an integrated probability distribution by combining jitter error with pixel position error. The combined error is modeled as the convolution of two error distributions. To verify the proposed statistical position error model, this paper has some experiments in tracking moving objects with IR stereo camera. The 3-D positions of object are accurately measured by the trajectory scanner, and 3-D positions are also estimated by stereo matching from IR stereo camera system. According to the experiments, the positions of moving object are estimated within the statistically reliable range which is derived by convolution of two probability models of pixel position error and timing jitter respectively. It is expected that the proposed statistical model can be applied to estimate the uncertain 3-D positions of moving objects in the diverse fields.

Prediction of Cured Cross-sectional Image in Projection Microstereolithography (전사방식 마이크로광조형의 경화 단면형상 예측)

  • Kim, Sung-Hyun;Park, In-Baek;Ha, Young-Myoung;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.102-108
    • /
    • 2010
  • Projection microstereolithography is a process of fabricating a micro-structure by using dynamic mask such as digital micromirror device(DMD). DMD shapes the beam into cross-sectional image of structure. Photocurable resin is cured by the beam and stacked layer on top of layer. It is difficult to deliver the beam from the DMD to the photocurable resin without any distortions. We assume that the beam exposed to the resin by 1 pixel of DMD has Gaussian distribution, so the shaped beam reflected by the DMD affects its neighboring area. Curing pattern corresponding to a cross-sectional images is predicted by superposition of pixels of Gaussian distribution and it is similar to cured shape.

Diffractive patterning on Cr thin film using femtosecond laser pulses (펨토초 레이저에 의한 크롬박막 미세 회절패턴 제작)

  • Kim, Jae-Gu;Cho, Sung-Hak;Chang, Won-Seok;Na, Suck-Joo;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.18-22
    • /
    • 2007
  • In this paper, we suggested the femtosecond laser processing using the mask which makes Gaussian spatial beam distribution to a normalized distribution by Fresenel diffraction. Holography pattern of the size of $320{\times}320{\mu}m^2$ on the Cr thin film on glass substrate with a pixel size of $5{\times}5{\mu}m^2$ was fabricated according to the pattern generated by the iterative Fourier transform algorithm(IFTA) algorithm. We analysed the damage threshold with an assumption the power distribution as Gaussian profile as 45 $mJ/cm^2$. The regenerated image of letters through the diffractive pattern was well recognized at the screen.

  • PDF

SAR Despeckling with Boundary Correction

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.270-273
    • /
    • 2007
  • In this paper, a SAR-despeck1ing approach of adaptive iteration based a Bayesian model using the lognormal distribution for image intensity and a Gibbs random field (GRF) for image texture is proposed for noise removal of the images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. The iterative approach based on MRF is very effective for the inner areas of regions in the observed scene, but may result in yielding false reconstruction around the boundaries due to using wrong information of adjacent regions with different characteristics. The proposed method suggests an adaptive approach using variable parameters depending on the location of reconstructed area, that is, how near to the boundary. The proximity of boundary is estimated by the statistics based on edge value, standard deviation, entropy, and the 4th moment of intensity distribution.

  • PDF

Real Time Light Intensity Control Algorithm Using Digital Image Mask for the Holographic Data Storage System (홀로그래픽 정보저장장치에서 디지털 이미지 마스크를 이용한 실시간 광량 제어 알고리즘)

  • Kim, Sang-Hoon;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Holographic data storage system(HDSS) has many noise sources - crosstalk, scattering and inter pixel interference, etc. Generally the intensity of a light generated from the laser source has Gaussian distribution and this ununiformity of light also can make the data page to have a low SNR. A beam apodizer is used to make the laser as a flat-top beam but the intensity distribution is not strictly uniform. The intensity of light can be controlled using image mask. In this paper the intensity distribution of light used for HDSS is controlled by a digital image mask. The digital image mask is changed arbitrarily in real-time with suggested algorithm for the HDSS.

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

Qualitative Evaluation of 2D Dosimetry System for Helical Tomotherapy (2차원 토모테라피 선량측정시스템의 정성적 평가)

  • Ma, Sun Young;Jeung, Tae Sig;Shim, Jang Bo;Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • The purpose of this study is to see the feasibility of the newly developed 2D dosimetry system using phosphor screen for helical tomotherapy. The cylindrical water phantom was fabricated with phosphor screen to emit the visible light during irradiation. There are three types of virtual target, one is one spot target, another is C-shaped target, and the other is multiple targets. Each target was planned to be treated at 10 Gy by treatment planning system (TPS) of tomotherapy. The cylindrical phantom was placed on the tomotherapy table and irradiated as calculations of the TPS. Every frame which acquired by CCD camera was integrated and the doses were calculated in pixel by pixel. The dose distributions from the fluorescent images were compared with the calculated dose distribution from the TPS. The discrepancies were evaluated as gamma index for each treatment. The curve for dose rate versus pixel value was not saturated until 900 MU/min. The 2D dosimetry using the phosphor screen and the CCD camera is respected to be useful to verify the dose distribution of the tomotherapy if the linearity correction of the phosphor screen improved.

The Effect of Training Patch Size and ConvNeXt application on the Accuracy of CycleGAN-based Satellite Image Simulation (학습패치 크기와 ConvNeXt 적용이 CycleGAN 기반 위성영상 모의 정확도에 미치는 영향)

  • Won, Taeyeon;Jo, Su Min;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2022
  • A method of restoring the occluded area was proposed by referring to images taken with the same types of sensors on high-resolution optical satellite images through deep learning. For the natural continuity of the simulated image with the occlusion region and the surrounding image while maintaining the pixel distribution of the original image as much as possible in the patch segmentation image, CycleGAN (Cycle Generative Adversarial Network) method with ConvNeXt block applied was used to analyze three experimental regions. In addition, We compared the experimental results of a training patch size of 512*512 pixels and a 1024*1024 pixel size that was doubled. As a result of experimenting with three regions with different characteristics,the ConvNeXt CycleGAN methodology showed an improved R2 value compared to the existing CycleGAN-applied image and histogram matching image. For the experiment by patch size used for training, an R2 value of about 0.98 was generated for a patch of 1024*1024 pixels. Furthermore, As a result of comparing the pixel distribution for each image band, the simulation result trained with a large patch size showed a more similar histogram distribution to the original image. Therefore, by using ConvNeXt CycleGAN, which is more advanced than the image applied with the existing CycleGAN method and the histogram-matching image, it is possible to derive simulation results similar to the original image and perform a successful simulation.

TFT-LCD Defect Detection based on Histogram Distribution Modeling (히스토그램 분포 모델링 기반 TFT-LCD 결함 검출)

  • Gu, Eunhye;Park, Kil-Houm;Lee, Jong-Hak;Ryu, Gang-Soo;Kim, Jungjoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1519-1527
    • /
    • 2015
  • TFT-LCD automatic defect inspection system for detecting defects in place of the visual tester does pre-processing, candidate defect pixel detection, and recognition and classification through a blob analysis. An over-detection result of defects acts as an undue burden of blob analysis for recognition and classification. In this paper, we propose defect detection method based on the histogram distribution modeling of TFT-LCD image to minimize over-detection of candidate defective pixels. Primary defect candidate pixels are detected estimating the skewness of the luminance distribution histogram of the background pixels. Based on the detected defect pixels, the defective pixels other than noise pixels are detected using the distribution histogram model of the local area. Experimental results confirm that the proposed method shows an excellent defect detection result on the image containing the various types of defects and the reduction of the degree of over-detection as well.