• Title/Summary/Keyword: Pixel

Search Result 3,993, Processing Time 0.029 seconds

A Study of the Scene-based NUC Using Image-patch Homogeneity for an Airborne Focal-plane-array IR Camera (영상 패치 균질도를 이용한 항공 탑재 초점면배열 중적외선 카메라 영상 기반 불균일 보정 기법 연구)

  • Kang, Myung-Ho;Yoon, Eun-Suk;Park, Ka-Young;Koh, Yeong Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.146-158
    • /
    • 2022
  • The detector of a focal-plane-array mid-wave infrared (MWIR) camera has different response characteristics for each detector pixel, resulting in nonuniformity between detector pixels. In addition, image nonuniformity occurs due to heat generation inside the camera during operation. To solve this problem, in the process of camera manufacturing it is common to use a gain-and-offset table generated from a blackbody to correct the difference between detector pixels. One method of correcting nonuniformity due to internal heat generation during the operation of the camera generates a new offset value based on input frame images. This paper proposes a technique for dividing an input image into block image patches and generating offset values using only homogeneous patches, to correct the nonuniformity that occurs during camera operation. The proposed technique may not only generate a nonuniformity-correction offset that can prevent motion marks due to camera-gaze movement of the acquired image, but may also improve nonuniformity-correction performance with a small number of input images. Experimental results show that distortion such as flow marks does not occur, and good correction performance can be confirmed even with half the number of input images or fewer, compared to the traditional method.

Image Evaluation by Metallic Hip Prosthesis in Computed Tomography Examination (컴퓨터단층촬영검사에서 고관절 삽입물에 의한 영상평가)

  • Min, Byung-In;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.281-288
    • /
    • 2022
  • In this study, four algorithms (Soft, Standard, Detail, Bone) were used for general CT scan (Before MAR) images and MAR (After MAR) images for patients with metal implants inserted into the hip joint. was applied to compare and analyze Noise, SNR, and CNR to find out the optimal algorithm for quantitative evaluation. As the analysis method, Image J program, which can calculate image analysis and area and pixel values on the image reconstructed with four algorithms, was used. In order to obtain Noise, SNR, and CNR, the HU mean value and HU SD value were obtained by designating the bone (ischium) closest to the metal implant in the image for the measurement site, and the background noise was the surrounding muscle. The region of interest (ROI) was equally designated as 15 × 15 mm in consideration of the size of the bone, and the values of SNR and CNR were calculated according to the given equation. As a result, for noise, After MAR and Soft algorithms showed the lowest noise, and SNR and CNR showed the highest for Before MAR and Soft algorithms. Therefore, the soft algorithm is judged to be the most appropriate algorithm for metal implant hip joint CT.

Post-processing Method of Point Cloud Extracted Based on Image Matching for Unmanned Aerial Vehicle Image (무인항공기 영상을 위한 영상 매칭 기반 생성 포인트 클라우드의 후처리 방안 연구)

  • Rhee, Sooahm;Kim, Han-gyeol;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1025-1034
    • /
    • 2022
  • In this paper, we propose a post-processing method through interpolation of hole regions that occur when extracting point clouds. When image matching is performed on stereo image data, holes occur due to occlusion and building façade area. This area may become an obstacle to the creation of additional products based on the point cloud in the future, so an effective processing technique is required. First, an initial point cloud is extracted based on the disparity map generated by applying stereo image matching. We transform the point cloud into a grid. Then a hole area is extracted due to occlusion and building façade area. By repeating the process of creating Triangulated Irregular Network (TIN) triangle in the hall area and processing the inner value of the triangle as the minimum height value of the area, it is possible to perform interpolation without awkwardness between the building and the ground surface around the building. A new point cloud is created by adding the location information corresponding to the interpolated area from the grid data as a point. To minimize the addition of unnecessary points during the interpolation process, the interpolated data to an area outside the initial point cloud area was not processed. The RGB brightness value applied to the interpolated point cloud was processed by setting the image with the closest pixel distance to the shooting center among the stereo images used for matching. It was confirmed that the shielded area generated after generating the point cloud of the target area was effectively processed through the proposed technique.

A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI (GK2A 일단위 NDVI의 과소추정 노이즈 실시간 보정)

  • Lee, Soo-Jin;Youn, Youjeong;Sohn, Eunha;Kim, Mija;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1301-1314
    • /
    • 2022
  • Normalized Difference Vegetation Index (NDVI) is utilized as an indicator to represent the vegetation condition on the land surface in various applications such as land cover, crop yield, agricultural drought, soil moisture, and forest disaster. However, satellite optical sensors for visible and infrared rays cannot see through the clouds, so the NDVI of the cloud pixel is not a valid value for the land surface. This study proposed a real-time correction of the underestimation noise for GEO-KOMPSAT-2A (GK2A) daily NDVI and made sure its feasibility through the quantitative comparisons with Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI and the qualitative interpretation of time-series changes. The underestimation noise was effectively corrected by the procedures such as the time-series correction considering vegetation phenology, the outlier removal using long-term climatology, and the gap filling using rigorous statistical methods. The correlation with MODIS NDVI was higher, and the difference was lower, showing a 32.7% improvement compared to the original NDVI product. The proposed method has an extensibility for use in other satellite products with some modification.

The Performance Improvement of U-Net Model for Landcover Semantic Segmentation through Data Augmentation (데이터 확장을 통한 토지피복분류 U-Net 모델의 성능 개선)

  • Baek, Won-Kyung;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1663-1676
    • /
    • 2022
  • Recently, a number of deep-learning based land cover segmentation studies have been introduced. Some studies denoted that the performance of land cover segmentation deteriorated due to insufficient training data. In this study, we verified the improvement of land cover segmentation performance through data augmentation. U-Net was implemented for the segmentation model. And 2020 satellite-derived landcover dataset was utilized for the study data. The pixel accuracies were 0.905 and 0.923 for U-Net trained by original and augmented data respectively. And the mean F1 scores of those models were 0.720 and 0.775 respectively, indicating the better performance of data augmentation. In addition, F1 scores for building, road, paddy field, upland field, forest, and unclassified area class were 0.770, 0.568, 0.433, 0.455, 0.964, and 0.830 for the U-Net trained by original data. It is verified that data augmentation is effective in that the F1 scores of every class were improved to 0.838, 0.660, 0.791, 0.530, 0.969, and 0.860 respectively. Although, we applied data augmentation without considering class balances, we find that data augmentation can mitigate biased segmentation performance caused by data imbalance problems from the comparisons between the performances of two models. It is expected that this study would help to prove the importance and effectiveness of data augmentation in various image processing fields.

NDVI Based on UAVs Mapping to Calculate the Damaged Areas of Chemical Accidents (화학물질사고 피해영역 산출을 위한 드론맵핑 기반의 정규식생지수 활용방안 연구)

  • Lim, Eontaek;Jung, Yonghan;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1837-1846
    • /
    • 2022
  • The annual increase in chemical accidents is causing damage to life and the environment due to the spread and residual of substances. Environmental damage investigation is more difficult to determine the geographical scope and timing than human damage investigation. Considering the reality that there is a lack of professional investigation personnel, it is urgent to develop an efficient quantitative evaluation method. In order to improve this situation, this paper conducted a chemical accidents investigation using unmanned aerial vehicles(UAV) equipped with various sensors. The damaged area was calculated by Ortho-image and strength of agreement was calculated using the normalized difference vegetation index image. As a result, the Cohen's Kappa coefficient was 0.649 (threshold 0.7). However, there is a limitation in that analysis has been performed based on the pixel of the normalized difference vegetation index. Therefore, there is a need for a chemical accident investigation plan that overcomes the limitations.

Comparison of Semantic Segmentation Performance of U-Net according to the Ratio of Small Objects for Nuclear Activity Monitoring (핵활동 모니터링을 위한 소형객체 비율에 따른 U-Net의 의미론적 분할 성능 비교)

  • Lee, Jinmin;Kim, Taeheon;Lee, Changhui;Lee, Hyunjin;Song, Ahram;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1925-1934
    • /
    • 2022
  • Monitoring nuclear activity for inaccessible areas using remote sensing technology is essential for nuclear non-proliferation. In recent years, deep learning has been actively used to detect nuclear-activity-related small objects. However, high-resolution satellite imagery containing small objects can result in class imbalance. As a result, there is a performance degradation problem in detecting small objects. Therefore, this study aims to improve detection accuracy by analyzing the effect of the ratio of small objects related to nuclear activity in the input data for the performance of the deep learning model. To this end, six case datasets with different ratios of small object pixels were generated and a U-Net model was trained for each case. Following that, each trained model was evaluated quantitatively and qualitatively using a test dataset containing various types of small object classes. The results of this study confirm that when the ratio of object pixels in the input image is adjusted, small objects related to nuclear activity can be detected efficiently. This study suggests that the performance of deep learning can be improved by adjusting the object pixel ratio of input data in the training dataset.

Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery (KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합)

  • Kim, Taeheon;Yun, Yerin;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1901-1910
    • /
    • 2022
  • Arriving in the new space age, securing technology for fusion application of KOMPSAT-3·3A and global satellite images is becoming more important. In general, multi-sensor satellite images have relative geometric errors due to various external factors at the time of acquisition, degrading the quality of the satellite image outputs. Therefore, we propose a fine-image registration methodology to minimize the relative geometric error between KOMPSAT-3·3A and global satellite images. After selecting the overlapping area between the KOMPSAT-3·3A and foreign satellite images, the spatial resolution between the two images is unified. Subsequently, tie-points are extracted using a hybrid matching method in which feature- and area-based matching methods are combined. Then, fine-image registration is performed through iterative registration based on pyramid images. To evaluate the performance and accuracy of the proposed method, we used KOMPSAT-3·3A, Sentinel-2A, and PlanetScope satellite images acquired over Daejeon city, South Korea. As a result, the average RMSE of the accuracy of the proposed method was derived as 1.2 and 3.59 pixels in Sentinel-2A and PlanetScope images, respectively. Consequently, it is considered that fine-image registration between multi-sensor satellite images can be effectively performed using the proposed method.

Development of High-Sensitivity and Entry-Level Nuclide Analysis Module (고감도 보급형 핵종 분석 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.515-519
    • /
    • 2022
  • In this paper, we propose the development of a high-sensitivity entry-level nuclide analysis module. The proposed measurement sensor module consists of an electronic driving circuit for nuclide analysis resolution, prototype production with nuclide analysis function, and GUI development applied to prototypes. The electronic part driving circuit for nuclide analysis resolution is divided into nuclide analysis resolution process by the electronic part driving circuit block diagram, MCU circuit design used for radiation measurement, and PC program design for Spectrum acquisition. Prototyping with nuclide analysis function is made by adding a 128×128 pixel OLED display, three buttons for operation, a Li-ion battery, and a USB-C type port for charging the battery. The GUI development department applied to the prototype develops the screen composition such as the current time, elapsed measurement time, total count, and nuclide Spectrum. To evaluate the performance of the proposed measurement sensor module, an expert witness test was conducted. As a result of the test, it was confirmed that the calculated result by applying the resolution formula to the Spectrum (FWHM@662keV) obtained using the Cs-137 standard source in the nuclide analysis device had a resolution of 17.77%. Therefore, it was confirmed that the nuclide analysis resolution method proposed in this paper produces improved performance while being cheaper than the existing commercial nuclide analysis module.

Development of Registration Post-Processing Technology to Homogenize the Density of the Scan Data of Earthwork Sites (토공현장 스캔데이터 밀도 균일화를 위한 정합 후처리 기술 개발)

  • Kim, Yonggun;Park, Suyeul;Kim, Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.689-699
    • /
    • 2022
  • Recently, high productivity capabilities have been improved due to the application of advanced technologies in various industries, but in the construction industry, productivity improvements have been relatively low. Research on advanced technology for the construction industry is being conducted quickly to overcome the current low productivity. Among advanced technologies, 3D scan technology is widely used for creating 3D digital terrain models at construction sites. In particular, the 3D digital terrain model provides basic data for construction automation processes, such as earthwork machine guidance and control. The quality of the 3D digital terrain model has a lot of influence not only on the performance and acquisition environment of the 3D scanner, but also on the denoising, registration and merging process, which is a preprocessing process for creating a 3D digital terrain model after acquiring terrain scan data. Therefore, it is necessary to improve the terrain scan data processing performance. This study seeks to solve the problem of density inhomogeneity in terrain scan data that arises during the pre-processing step. The study suggests a 'pixel-based point cloud comparison algorithm' and verifies the performance of the algorithm using terrain scan data obtained at an actual earthwork site.