• Title/Summary/Keyword: Pixel

Search Result 3,986, Processing Time 0.031 seconds

Half-Pixel Correction for MPEG-2/H.264 Transcoding (DCT 기반 MPEG-2/H.264 변환을 위한 1/2 화소 보정)

  • Kwon Soon-young;Lee Joo-kyong;Chung Ki-dong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.956-962
    • /
    • 2005
  • To improve video quality and coding efficiency, H.264/AVC adopts different half pixel calculating method compared with the previous standards. So, the transcoder requires additional works to transcode the pre-coded video contents with the previous standards to H.264/AVC in DCT domain. In this paper, we propose the first half-pixel correction method for MPEG-2 to H.264 transcoding in DCT domain. In the proposed method, MPEG-2 block is added to the correction block obtained by difference calculation of half-pixel values between two standards using DCT reference frame. Experimental results show that the proposed achieves better quality than pixel based cascaded transcoding method.

Block-Based Low-Power CMOS Image Sensor with a Simple Pixel Structure

  • Kim, Ju-Yeong;Kim, Jeongyeob;Bae, Myunghan;Jo, Sung-Hyun;Lee, Minho;Choi, Byoung-Soo;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • In this paper, we propose a block-based low-power complementary metal oxide semiconductor (CMOS) image sensor (CIS) with a simple pixel structure for power efficiency. This method, which uses an additional computation circuit, makes it possible to reduce the power consumption of the pixel array. In addition, the computation circuit for a block-based CIS is very flexible for various types of pixel structures. The proposed CIS was designed and fabricated using a standard CMOS 0.18 ${\mu}m$ process, and the performance of the fabricated chip was evaluated. From a resultant image, the proposed block-based CIS can calculate a differing contrast in the block and control the operating voltage of the unit blocks. Finally, we confirmed that the power consumption in the proposed CIS with a simple pixel structure can be reduced.

Study on the Effect of the Operation Voltage according to the Reverse Twist for the fringe Field Switching (FFS) Mode (FFS 모드에서 Reverse Twist가 구동전압에 미치는 영향에 관한 연구)

  • Kim, Mi-Sook;Jung, Yeon-Hak;Seen, Seung-Min;Kim, Hyang-Yul;Kim, Seo-Yoon;Lim, Young-Jin;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1033-1037
    • /
    • 2005
  • We have studied on the effect of the operation voltage according to the reverse twist for the different fringe field switching (FFS) structure. The FFS structure with a vertically patterned edge of the pixel electrode (VPP) has lower operation voltage comparing to the one with a horizontally patterned edge of the pixel electrode (HPP). The reason is like that the number of the pattern of the pixel edge for the VPP structure is one third comparing with the HPP structure and thus, there is small reverse twist area for the VPP structure. Actually, the reverse twist disturbs the twist of LC near adjacent active area, result that LCs near there have the unstable dynamics. That is, the operation voltage increases as the reverse twist area increases. Therefore, it is very important to design pixel electrode with a small reverse twist region for the FFS mode.

A study on the detection probabilities of pixel defects with respect to their locations on the TFT-LCD (TFT-LCD의 품질검사기준 설정을 위한 픽셀결점 탐지도 평가)

  • 김상호;양승준
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.283-289
    • /
    • 2004
  • The number of pixel defects including bright and black dots on a panel is one of the critical factors determining the quality of TFT-LCD. Since pixel defects on the TFT-LCD panels are sometimes unavoidable, manufacturers have to inspect the panels so that any panel with an unacceptable number of defects will not be delivered to the buyers. However, the buyers demand for the manufacturers to meet different pixel defects tolerances (acceptable number of pixel defects on a TFT-LCD panel) around central(tight) and peripheral(loose) inspection zones. The disagreement in quality standard among different buyers also cause confusions in screening non-confirmative products and unstable yield of production. Few research has focused on the effects of defect locations on a TFT-LCD panel on their detection probabilities and the rational division of defect inspection zones. In this research, experiments were conducted to find the detection probabilities of black dot defects with respect to their varying locations on a TFT-LCD. It is proposed a rational division of inspection zone on a TFT-LCD panel on the basis of detection probabilities of the defects. With these division of inspection zones and the mean defect detection probability within each zone, it is expected to establish a more reasonable pixel defects tolerances.

  • PDF

Moving Pixel Displacement Detection using Correlation Functions on CIS Image

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.349-354
    • /
    • 2010
  • Moving pixel displacement detection algorithm using correlation functions for making panorama image on the continuous images is presented in this paper. The input images get from a CMOS image sensor (CIS). The camera is maintained by constant brightness and uniform sensing area in test input pattern. For simple navigation and capture image has to 70% overlapped region. A correlation rate in two image data is evaluated by using reference image with first captures, and compare image with next captures. The displacement of the two images are expressed to second order function of x, y and solved with finding the coefficient in second order function. That results in the change in the peak correlation displacement from the reference to the compare image, is moving to pixel length. The navigating error is reduced by varying the path because the error is shown in the difference of the positioning vector between the true pixel position and the navigated pixel position. The algorithm performance is evaluated to be different from the error vector to vary the navigating path grid.

Fingerprint Sensor Based on a Skin Resistivity with $256{\times}256$ pixel array ($256{\times}256$ 픽셀 어레이 저항형 지문센서)

  • Jung, Seung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.531-536
    • /
    • 2009
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure around the unit pixel. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.

Leakage Current of Hydrogenated Amorphous Silicon Thin-Film Transistors (수소화된 비정질규소 박막트랜지스터의 누설전류)

  • Lee, Ho-Nyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.738-742
    • /
    • 2007
  • The variations in the device characteristics of hydrogenated amorphous thin-film transistors (a-Si:H TFTs) were studied according to the processes of pixel electrode fabrication to make active-matrix flat-panel displays. The off-state current was about 1 pA and the switching ratio was over $10^6$ before fabrication of pixel electrodes; however, the off-state current increased over 10 pA after fabrication of pixel electrodes. Surface treatment on SiNx passivation layers using plasma could improve the off-state characteristics after pixel electrode process. $N_2$ plasma treatment gave the best result. Charge accumulation on the SiNx passivation layer during the deposition of transparent conducting layer might cause the increase of off-state current after the fabrication of pixel electrodes.

  • PDF

Impervious Surface Estimation Area of Seom River Basin using Satellite Imagery and Sub-pixel Classifier (위성영상과 Sub-pixel 분류에 의한 섬강유역의 불투수율 추정)

  • Na, Sang-Il;Park, Jong-Hwa;Shin, Hyoung-Sub;Park, Jin-Ki;Baek, Shin-Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.744-744
    • /
    • 2012
  • 불투수층은 자연적인 침투를 허용하지 않는 인위적인 토지피복상태로 도시화율 추정 및 유역의 환경변화 정도를 분석하기 위한 척도로 사용되어 왔다. 특히, 수문학적 관점에서 불투수층은 단기 유출현상에 큰 영향을 끼치는 요소로 불투수율이 증가할수록 침투량이 감소하여 첨두유출량은 증가하고 도달시간은 짧아진다. 최근에는 급속한 도시화로 인해 불투수층의 영향이 더욱 커짐에 따라 불투수율의 추정에 대한 필요성이 증가하고 있다. 현재까지 위성영상을 이용한 불투수층의 추정은 고해상도 영상을 이용하여 피복분류를 수행하였다. 즉, 분류된 토지피복에 근거하여 불투수율을 산술적으로 계산하거나 분광혼합기법 및 회귀 트리기법 등 다양한 방법에 적용되어 왔다. 본 연구에서는 Sub-pixel 분류기법을 위성영상에 적용하여 섬강유역의 불투수율을 추정하고자 한다. Sub-pixel 분류는 기존 분류기법들이 다양한 토지피복이 혼합된 화소에 대해서도 가장 비중이 높은 토지피복 하나로 분류하던 것을 개선한 방법으로 fuzzy 이론을 적용하여 최소 20% 이상의 비율을 점유하는 항목 모두를 구분하여 분류하는 기법이다. 이를 위해 섬강유역의 Landsat TM 영상을 수집하고 환경부의 토지피복도와 지질도를 참조하여 트레이닝 자료를 수집하였다. 또한 결과에 영향을 미칠 수 있는 구름은 전처리를 통하여 제거하고 수집된 트레이닝 자료에 Sub-pixel 분류기법을 적용하여 섬강유역의 불투수율을 공간분포도로 작성하였다.

  • PDF

Semantic Image Segmentation Combining Image-level and Pixel-level Classification (영상수준과 픽셀수준 분류를 결합한 영상 의미분할)

  • Kim, Seon Kuk;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1425-1430
    • /
    • 2018
  • In this paper, we propose a CNN based deep learning algorithm for semantic segmentation of images. In order to improve the accuracy of semantic segmentation, we combined pixel level object classification and image level object classification. The image level object classification is used to accurately detect the characteristics of an image, and the pixel level object classification is used to indicate which object area is included in each pixel. The proposed network structure consists of three parts in total. A part for extracting the features of the image, a part for outputting the final result in the resolution size of the original image, and a part for performing the image level object classification. Loss functions exist for image level and pixel level classification, respectively. Image-level object classification uses KL-Divergence and pixel level object classification uses cross-entropy. In addition, it combines the layer of the resolution of the network extracting the features and the network of the resolution to secure the position information of the lost feature and the information of the boundary of the object due to the pooling operation.