• Title/Summary/Keyword: Pitting test

Search Result 163, Processing Time 0.026 seconds

Electrochemical Corrosion Properties of YSZ Coated AA1050 Aluminium Alloys Prepared by Aerosol Deposition (에어로졸 증착법에 의한 YSZ 코팅된 AA1050 알루미늄 합금의 전기화학적 부식 특성)

  • Ryu, Hyun-Sam;Lim, Tae-Seop;Ryu, Jung-Ho;Park, Dong-Soo;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.439-446
    • /
    • 2011
  • Yttria stabilized zirconia (YSZ) coating was formed on AA1050 Al alloys by aerosol deposition (AD), and its electrochemical corrosion properties were investigated in 3.5 wt% NaCl and 0.5M $H_2SO_4$ solutions. The crack-free, dense, and ~5 ${\mu}m$ thick YSZ coating was successfully obtained by AD. The as-deposited coating was composed of cubic-YSZ nanocrystallites of ~10 nm size. The potentiodynamic test indicated that the YSZ coated Al alloy had much lower corrosion current densities (2 nA/$cm^2$) by comparison to uncoated sample and exhibited a passive behavior in anodic branch. Particularly, a pitting breakdown potential could not be identified in $H_2SO_4$. EIS tests revealed that the impedance of YSZ coated sample was ${\sim}10^6{\Omega}cm^2$ in NaCl and ${\sim}10^7{\Omega}cm^2$ in $H_2SO_4$, which was about 3 or 4 orders of magnitude higher than that of uncoated sample. Consequently, the corrosion resistance of Al alloy had been significantly enhanced by the YSZ coating.

Study on the Characteristics of the dehumidification LDPE film (제습 LDPE 필름에 관한 특성 분석연구)

  • JO, Dong-Soo;Noh, Young-Tai;Park, Byung-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7917-7924
    • /
    • 2015
  • In this study, based on CMA which is increasingly used for eco-friendly deicing materials, dehumidification MB made of sodium carbonate, $MgCl_2$/MgO (M/M), and SAP is to be produced. And its moisture absorption rate and dehumidification performance of the film are to be analyzed. And the data on the materials used for the dehumidification film are to be acquired. In case of the dehumidification MB, in which CMA and SAP are mixed, had poor film machinability due to foaming and moisture issues, but adding bentonite and calcium carbonate solved the problem. When a foaming agent was added to extend surface area between substances, CMA and M/M showed no remarkable difference, but SC showed large increase to 3.15 g/g. As the result of anti-corrosive test, CMA dehumidification film showed no corrosion while SC showed pitting corrosion and M/M showed corrosion.

Effect of Pseudomonas aeruginosa Strain ZK Biofilm on the Mechanical and Corrosion Behavior of 316L Stainless Steel and α-brass

  • Farooq, A.;Zubair, M.;Wadood, H.Z.;Deen, K.M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.431-439
    • /
    • 2021
  • This research work aims to investigate the effect of the aerobic bacterium, Pseudomonas aeruginosa on the mechanical and electrochemical properties of the 316L stainless steel and α-brass. These properties of both the alloys were determined after 7 days of exposure to the controlled and inoculated media at 37℃. The microstructural and electrochemical test results revealed the deleterious effects of Pseudomonas aeruginosa. After exposure to the inoculated medium, the scanning electron microscopy (SEM) results showed the larger pitting and formation of relatively dense biofilm on α-brass compared to 316L stainless steel. The tensile strength and hardness of 316L stainless steel were slightly affected after exposure to the controlled and inoculated media. After exposure to the controlled medium and inoculated media, the tensile strength of the α-brass was least affected but a significant decrease in the hardness (from 165 HV to 124 HV) was observed due to the severe attack induced by the Pseudomonas aeruginosa. Similarly, the open-circuit potential of the 316L stainless steel in the inoculated medium was measured to be less active (-410 mV vs Ag/AgCl) than α-brass (-550 mV vs Ag/AgCl). In the inoculated medium, potentiodynamic polarization curves confirmed the severe attack of Pseudomonas aeruginosa on α-brass (7.15 × 10-2 mm/year) compared to 316L stainless steel which registered a corrosion rate of 5.14 × 10-4 mm/year.

Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding (가스 질화를 통한 316L스테인리스강의 내식성 개선)

  • Hyunbin Jo;Serim Park;Jisu Kim;Junghoon Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Austenitic stainless steel 316L has been used a lot of applications because of its high corrosion resistance and formability. In addition, copper brazing is employed to create complex shape of 316L stainless steel for various engineering parts. In such system, copper-based filler metals make galvanic cell at metal/filler metal interface, and it accelerates corrosion of stainless steel. Furthermore, Cu-rich region formed by diffused copper in austenitic stainless steel can promote a pitting corrosion. In this study, we used an ammonia (NH3) gas to nitride the 316L stainless steel for improving the corrosion resistance. The thickness of the nitride (nitrogen high) layer increased with the treatment temperature, and the surface hardness also increased. The potentiodynamic polarization test showed the improvement of corrosion resistance of 316L stainless steel by enhancing the passivation on nitride layer. However, in case of high temperature nitriding, a chromium nitride was formed and its fraction increased, so that the corrosion resistance was decreased compared to the intact 316L stainless steel.

Evaluation of the Biodurability of Polyurethane-Covered Stent Using a Flow Phantom

  • Dong Hyun Kim;Sung-Gwon Kang;Jung Ryul Choi;Ju Nam Byun;Young Chul Kim;Young Moo Ahn
    • Korean Journal of Radiology
    • /
    • v.2 no.2
    • /
    • pp.75-79
    • /
    • 2001
  • Objective: To evaluate the biodurability of the covering material in retrievable metallic stents covered with polycarbonate polyurethane. Materials and Methods: Using a peristaltic pump at a constant rate of 1ml/min, bile was recirculated from a reservoir through a long tube containing four stents. Each of these was removed from the system every two weeks and a radial tensile strength test and scanning electron microscopy (SEM) were performed. Each stent, removed at 2, 4, 6 and 8 weeks, was compared with a control stent not exposed to bile juice. Results: Gross examination showed that stents were intact at 2 weeks, but at 4, 6 and 8 weeks cracks were observed. The size of these increased gradually in accordance with the duration of exposure, and at 8 weeks several large holes in the polyurethane membrane were evident. With regard to radial tensile strength, extension and peak load at break were 84.47% and 10.030 N/mm, 54.90% and 6.769 N/mm, 16.55% and 2.452 N/mm, 11.21% and 1.373 N/mm at 0, 2, 4 and 6 weeks, respectively. Scanning electron microscopy at 2 weeks revealed intermittent pitting and cracking, and examination at 4, 6 and 8 weeks showed that the size of these defects was gradually increasing. Conclusion: When the polyurethane membrane was exposed to bile, biodegradation was first observed at week two and increased gradually according to the duration of exposure.

  • PDF

Influence of the nitrogen gas addition in the Ar shielding gas on the erosion-corrosion of tube-to-tube sheet welds of hyper duplex stainless steel (질소 보호 가스 첨가가 하이퍼 듀플렉스 스테인리스 밀봉용접재의 마모부식 저항성에 미치는 영향)

  • Kim, Hye-Jin;Jeon, Soon-Hyeok;Kim, Soon-Tae;Lee, In-Sung;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.70-80
    • /
    • 2014
  • Duplex stainless steels with nearly equal fraction of the ferrite(${\alpha}$) phase and austenite(${\gamma}$) phase have been increasingly used for various applications such as power plants, desalination facilities due to their high resistance to corrosion, good weldability, and excellent mechanical properties. Hyper duplex stainless steel (HDSS) is defined as the future duplex stainless steel with a pitting resistance equivalent (PRE=wt.%Cr+3.3(wt.%Mo+0.5wt.%W)+30wt.%N) of above 50. However, when HDSS is welded with gas tungsten arc (GTA), incorporation of nitrogen in the Ar shielding gas are very important because the volume fraction of ${\alpha}$-phase and ${\gamma}$-phase is changed and harmful secondary phases can be formed in the welded zone. In other words, the balance of corrosion resistance between two phases and reduction of $Cr_2N$ are the key points of this study. The primary results of this study are as follows. The addition of $N_2$ to the Ar shielding gas provides phase balance under weld-cooling conditions and increases the transformation temperature of the ${\alpha}$-phase to ${\gamma}$-phase, increasing the fraction of ${\gamma}$-phase as well as decreasing the precipitation of $Cr_2N$. In the anodic polarization test, the addition of nitrogen gas in the Ar shielding gas improved values of the electrochemical parameters, compared to the Pure Ar. Also, in the erosion-corrosion test, the HDSS welded with shielding gas containing $N_2$ decreased the weight loss, compared to HDSS welded with the Ar pure gas. This result showed the resistance of erosion-corrosion was increased due to increasing the fraction of ${\gamma}$-phase and the stability of passive film according to the addition $N_2$ gas to the Ar shielding gas. As a result, the addition of nitrogen gas to the shielding gas improved the resistance of erosion-corrosion.

Corrosion Characteristics of Cell-Covered Ternary Ti-Nb-Ta Alloy for Biomaterials

  • Kim, W.G.;Yu, J.W.;Choe, H.C.;Ko, Y.M.;Park, G.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.62-67
    • /
    • 2009
  • Ti and Ti-alloys have good biocompatibility, appropriate mechanical properties and excellent corrosion resistance. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus (100 GPa) than cortical bone (20 GPa). Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. The electrochemical behavior of surface-modified and MC3T3-E1 cell-cultured Ti-30(Nb,Ta) alloys with low elastic modulus have been investigated using various electrochemical methods. Surfaces of test samples were treated as follows: $0.3{\mu}m$ polished; $25{\mu}m$, $50{\mu}m$ and $125{\mu}m$ sandblasted. Specimen surfaces were cultured with MC3T3-E1 cells for 2 days. Average surface roughness ($R_a$) and morphology of specimens were determined using a surface profilometer, OM, and FE-SEM. Corrosion behavior was investigated using a potentiostat(EG&G PARSTAT 2273), and electrochemical impedance spectroscopy was performed (10 mHz to 100 kHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructures of the Ti-30(Ta,Nb) alloys had a needle-like appearance. The $R_a$ of polished Ti-30Ta and Ti-30Nb alloys was lower than that of the sandblasted Ti alloy. Cultured cells displayed round shapes. For polished alloy samples, cells were well-cultured on all surfaces compared to sandblasted alloy samples. In sandblasted and cell-cultured Ti-30(Nb,Ta) alloy, the pitting potential decreased and passive current density increased as $R_a$ increased. Anodic polarization curves of cell-cultured Ti alloys showed unstable behavior in the passive region compared to non-cell-cultured alloys. From impedance tests of sandblasted and cell-cultured alloys, the polarization resistance decreased as $R_a$ increased, whereas, $R_a$ for cell-cultured Ti alloys increased compared to non-cell-cultured Ti alloys.

Development of a Design System for Multi-Stage Gear Drives (2nd Report: Development of a Generalized New Design Algorithm) (다단 치차장치 설계 시스템 개발에 관한 연구(제 2보: 일반화된 신설계 알고리즘의 개발))

  • Chong, Tae-Hyong;Bae, In-Ho;Park, Gyung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.192-199
    • /
    • 2000
  • The design of multi-stage gear drives is a time-consuming process because it includes more complicated problems, which are not considered in the design of single-stage gear drives. The designer has no determine the number of reduction stages and the gear ratios of each reduction stage. In addition, the design problems include not only dimensional design but also configuration design of gear drive elements. There is no definite rule or principle for these types of design problems. Thus the design practices largely depend on the sense and the experiences of the designer, and consequently result in undesirable design solution. A new and generalized design algorithm has been proposed to support the designer at the preliminary phase of the design of multi-stage gear drives. The proposed design algorithm automates the design process by integrating the dimensional design and the configuration design process. The algorithm consists of four steps. In the first step, the user determines the number of reduction stages. In the second step, gear ratios of every stage are chosen using the random search method. The values of the basic design parameters of a gear are chose in the third step by using the generate and test method. Then the values of the dimensions, such as pitch diameter, outer diameter and face width, are calculated for the configuration design in the next step. The strength and durability of each gear is guaranteed by the bending strength and the pitting resistance rating practices by using AGMA rating formulas. In the final step, the configuration design is carried out using simulated annealing algorithm. The positions of gears and shafts are determined to minimize the geometrical volume (size) of a gearbox while avoiding interferences between them. These steps are carried out iteratively until a desirable solution is acquired. The proposed design algorithm is applied to the preliminary design of four-stage gear drives in order to validate the availability. The design solution has considerably good results in both aspects of the dimensional and the configuration design.

  • PDF

A STUDY CONCERNING THE CHARACTERISTICS OF KOREAN NI-TI ALLOY ORTHODONTIC WIRE (국산 Ni-Ti합금 교정용 선재의 특성에 관한 연구)

  • Park, Dong-Ok;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.25 no.2 s.49
    • /
    • pp.187-200
    • /
    • 1995
  • To estimate the characteristics of Korean Ni-Ti alloy orthodontic wire, this study investigated compositions, tensile properties, bending properties, heat treatment effects, and ion releasing degrees, and compared these characteristics to those of the imported Ni-Ti alloy wire. The results obtained are as follows ; 1. Ti and -Ni elements in ORTHOLLOY were in a range showing superelasticity, and there was a little difference in the Ni and Ti contents of ORTHOLLOY as compared with those of SENTALLOY. 2. The results of the tensile test concerning ORTHOLLOY exhibited a superelastic effect, indicating an area of a definite amount of stress in spite of the changes in the range from $2\%\;to\;8\%$ in the strain rate. 3. ORTHOLLOY presented higher load values than SENTALLOY in the same deflection values when the wire was tested in three-point bending. A load range displaying a superelastic effect was 80-l00g, 140-l80g, and 130-200g respectively, in wire diameters of 0.014', 0.016', and 0.018' 4. By heat treatments at $400^{\circ}C$ and at $500^{\circ}C$, a load range showing the effect of superelasticitly was lessened by the duration of the heat treatment time. The superelastic effect was destroyed as a result of the 10 minutes heat treatment at $600^{\circ}C$. 5. The quantity of the Ni ion released from ORTHOLLOY, tended to be greater than the amount of released Ni ion in SENTALLOY. The Co ion released was very little(<0.01ppm) in SENTALLOY and ORTHOLLOY irrespective of the lapse of time. Released Ni ions on the 1st day were at the maximum, and the releasing rate showed plateaus after three days. 6. The surface morphology of SENTALLOY was relatively regular irrespective of the lapse of rime, and the corrosion tendency was not observed. However, the surface morphology of ORTHOLLOY was rather irregular and shelved fitting corrosion after immersion.

  • PDF

A Study on Galvanic Corrosion properties between differential Al Alloys (이종 알루미늄 합금 간 갈바닉 부식 특성에 관한 연구)

  • Kim, Sun-Ho;Lee, Seul-Gi;Park, Jun-Mu;Park, Jae-Hyeok;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.96-96
    • /
    • 2018
  • 금속재료 중 알루미늄(Al)은 일반적으로 많이 사용되는 철강재에 비해 그 비중이 약 $1/3(2.7g/cm^3)$인 경량이고 열전도율이 약 3배($196kcal/^{\circ}C$, $20^{\circ}C$)로 높은 특성 등을 갖고 있다. 또한 대량생산에 의한 경제성을 가지기 때문에 건축 구조재, 전기 및 가전 등 다양한 산업 분야에서 널리 사용되고 있다. 특히, 위와 같은 특성으로 인해 열교환기의 종류에서 응축기(Condenser) 및 증발기(Evaporator)는 알루미늄(Al)을 널리 사용하고 있다. 하지만 단일 응축기 부품에도 이종 알루미늄 소재가 사용됨에 따라 갈바닉 부식이 발생할 수 있다는 단점이 있다. 따라서 본 연구에서는 현재 상용되고 있는 열교환기 중 응축기에서의 이종 알루미늄 재료로 인해 나타나는 갈바닉 부식 특성을 관찰-분석-연구 하였다. 본 연구에 사용된 알루미늄 재료는 현재 응축기 재료 중에서 각각 Tube와 Fin으로 널리 상용되고 있는 Al 1100과 Al 3003을 사용하였다. 표면 모폴로지는 SEM을 통해 관찰하였고 EDS를 통해 조성원소를 분석하였다. 또한 내식성 평가를 위해 5% NaCl 환경에서의 SST(Salt spray test, 염수분무시험) 시험과 3% NaCl 용액 내 자연침지 시험 및 탈기된 3% NaCl 용액 내 전기화학적 동전위 양극 분극 시험을 진행하였으며 더불어 갈바닉 부식 시험에 따른 혼합 전위 측정 및 외관 관찰을 하였다. 각 재료는 실험에 대해 동일한 표면적을 노출시켜 시험하였다. 5% NaCl 환경에서의 염수분무 시험 결과 Fin(Al 3003)의 경우에는 Tube(Al 1100) 보다 빠른 부식거동을 보이며 국부적인 공식부식(Pitting corrosion)이 촉진되었다. Tube(Al 1100)의 경우에는 치밀한 Al2O3 형성과 부식에 따른 Al(OH)3를 생성함에 따라 Fin(Al 3003)에 비해 느린 부식거동을 보였다. 3% NaCl 용액 내 자연 침지 및 전위 측정 결과 초기 전위는 Fin(Al 3003, 약 -0.85V/SCE)이 Tube(Al 1100, 약 -1.05V/SCE)에 비해 더 높은 값을 가지며 약 72시간 이후 Tube(Al 1100) 시편이 더 안정적인 전위 값을 나타냈다. 이는 안정적인 Al(OH)3 피막 형성에 기인한 것으로 사료된다. 탈기된 3% NaCl 용액 내 전기화학적 동전위 양극 분극 시험 결과 Fin(Al 3003) 시편에서 더 귀한 부식 전위 값을 나타냈지만 부식 전류는 더 낮은 값을 나타냈다. 상기 시험 결과를 바탕으로 Fin-Tube 간 장기간 접촉 시에는 갈바닉 부식이 발생할 수 있을 것으로 사료된다. 갈바닉 부식 시험 결과 초기 혼합 전위는 약 -1.05 V/SCE를 나타냈으며 약 288시간 경과 후 약 -0.85 V/SCE 값을 나타냈다. 이는 자연 전위 측정 및 동전위 양극 분극 시험에서의 부식 전위 값에서 알 수 있듯이 더 비한 전위인 Tube(Al 1100) 시편이 Fin(Al 3003) 시편에 대해 희생양극적(Sacrificial anode)인 역할을 한 것을 확인할 수 있었다. 또한 갈바닉 부식 전위 측정 간 외관 관찰에서도 Tube(Al 1100) 시편은 빠르게 흑변 하는 것을 확인할 수 있었으며 Fin(Al 3003) 시편은 침지 300시간 이후에도 초기와 유사한 표면 상태 및 광택을 유지하였다. 이상의 SST 시험, 자연 침지 시험, 전기화학적 양극 분극 시험 및 갈바닉 부식 시험 결과를 바탕으로 단일 부품 내 이종 알루미늄 소재 간 접촉 및 그에 따른 갈바닉 부식 발생을 확인할 수 있었다. 따라서 동종 성분이라고 할지라도 단일 부품 제작 시에는 그 사용 환경에 따라 이종 금속 재료의 사용에 대한 재고가 필요할 것으로 사료된다.

  • PDF