• Title/Summary/Keyword: Pitting Resistance

Search Result 212, Processing Time 0.025 seconds

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • 임우조;홍성희;윤병두
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.344-350
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.

  • PDF

A Study on the Galvanic corrosion and its Protection on Heat Exchanger Tube Plate (열교환기 관판의 전지작용부식과 방지에 관한 연구)

  • U-J Lim;S-H Hong;B-D Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.345-345
    • /
    • 2001
  • This paper was studied on the characteristics of galvanic corrosion and its protection on heat exchanger tube plate in the sea water. In this paper, behavior of pitting corrosion of Ni-al bronze connected with Ti tube was measured af flow velocity of 0 m/s and 2.4 m/s. To protect galvanic corrosion, the protection characteristics of Ni-Al bronze connected with Ti tube by Zn-base alloys galvanic anode and hexagonal nylon insert was investigated. Main results obtained asre al follows: 1) The galvanic corrosion of Ni-Al bronze connected with Ti-tube is more active than single Ni-al bronze. 2) As the circuit resistance increase under the cathodic protection employing Zn-base alloys galvanic anode, Ni-al bronze connected with Ti tube is cathodically unpolarized. 3) The corrosion of Ni-Al bronze connected with Ti tube by nylon insert controls approximately 73% than not nylon insert.

A Study on the Effect of Corrosion Resistance According to the Composition Variety of C, Cr, N in Duplex Stainless Steel

  • Kim, Hyeong-Jin;Cho, Kye-Hyun;Jung, Jae-young
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.179-186
    • /
    • 2004
  • Recently the alloy development of duplex stainless steel has been done. On this study we studied the effect of the corrosion resistance according to the composition variety of C, Cr, N in the alloy elements of duplex stainless steel. materials which have below 0.1[mm/year] corrosion rate enable to use for corrosion-resisting materials, generally. On this experiment we inspected the effect of the composition variety of C, Cr, N in duplex stainless steel and the heat treatment, which the condition was the water quenching after the heat treatment for 1hr. The experiment was done on the basis of the ASTM G48A test, Critical pitting temperature(CPT), and ASTM G-61(Electrochemical tests for cyclic polarization).

Effect of Drawing Rate on the Corrosion Behavior of Al Alloy Tubes for Automotive Cooling System (인발률에 따른 자동차 냉각 배관용 Al 합금의 부식 특성에 관한 연구)

  • Park, Byung-Joon;Kim, Jung-Gu;Ahn, Seung-Ho;Kwak, Dong-Ho;Sohn, Hyun-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.489-494
    • /
    • 2008
  • The effect of drawing rate on the electrochemical properties of 3003 Al alloys in 5 wt.% NaCl solution was investigated by electrochemical techniques (potentiodynamic polarization test, potentiostatic polarization test, electrochemical impedance spectroscopy (EIS)) and surface analyses (OM, SEM, EDS). Four kinds of automotive pipe materials were prepared (raw material, drawing rate = 5, 10, 15%). As the drawing rate of Al alloy tube increased, the pitting corrosion resistance increased due to the enrichment of Al oxides on the surface.

An Electrochemical Evaluation on the Corrosion Resistance of a Al Alloy (주조용 Al합금의 내식성에 관한 전기화학적 평가)

  • Youn Dae-Hyun;Lee Myung-Hoon;Kim Ki-Joon;Moon Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.495-501
    • /
    • 2005
  • Al is a active metal that owes its resistance to a thin, protective, barrier oxide surface layer, which is stable in air and neutral aqueous solution. Thus Al alloys are widely used in architectural trim. cold & hot-water storage vessels and piping. However Al and most of its alloy may corrode with some forms such as pitting corrosion, intergranular corrosion and galvanic corrosion in the case of exposure to various industrial and marine atmosphere. Therefore a correct evaluation of corrosion resistance for their Al and Al alloys may be more important in a economical point of view. In this study. a relative evaluation of corrosion resistance for three kinds of Al alloys such as ALDC2, ALDC3, and ALDC8 series was carried out with electrochemical method. There is a tendency that corrosion potential is shifted to positive or negative direction by alloying components regardless of corrosion resistance. Moreover the data of corrosion properties obtained from cathodic Polarization curve, cyclic voltammogram and AC. DC impedance respectively showed a good correspondence each other against the corrosion resistance but variation of corrosion potential. passivity current density of anodic polarization curve and corrosion current density by Tafel extrapolation and Stern-Geary method didn't correspond with not only each other but also considerably the data of corrosion properties discussed above. Therefore it is suggested that an optimum electrochemical evaluation for corrosion resistance of Al alloy is to calculate the diffusion limiting current density of cathodic polarization curve, impedance of AC or DC and polarization resistance of cyclic voltammogram.

Lab Weldability of Pure Titanium by Nd:YAG Laser (Nd:YAG 레이저를 이용한 순티타늄판의 겹치기 용접성)

  • Kim, Jong-Do;Kwak, Myung-Sub
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.315-322
    • /
    • 2008
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and creep properties in high temperature, which make them using many various fields of application. Especially, pure titanium, which has outstanding resistance for the stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion, brings out to the best material for the heat exchanger, ballast tank, desalination facilities, and so on. Responding to these needs, welding processes for titanium are also being used GTAW, GMAW, PAW, EBW, LBW, resistance welding and diffusion bonding, etc. However, titanium is very active and highly susceptible to embrittlement by oxygen, nitrogen, hydrogen and carbon at high temperature, so it needs to shield the weld metal from the air and these gases during welding by non-active gas. In this study, it was possible to get sound beads without humping and spatter with a decrease of peak power according to increase of pulse width, change of welding speed and overlap rate for heat input control, and shield conditions at pulsed laser welding of titanium plates for Lap welding.

Localized Corrosion of Pure Zr and Zircaloy-4

  • Yu, Youngran;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.253-259
    • /
    • 2003
  • Zirconium based alloys have been extensively used as a cladding material for fuel rods in nuclear reactors, due to their low thermal neutron absorption cross-section, excellent corrosion resistance and good mechanical properties at high temperatures. However, a cladding material for fuel rods in nuclear reactors was contact water during long time at high-temperature, so it is necessary to improve the wear and corrosion resistance of the fuel cladding, At ambient environment, there are few data or paper on the characteristic of corrosion in chloride solution and acidic solution. The specimens used in this work are pure Zr and Zircaloy-4. Zircaloy-4 is a specific zirconium-based alloy containing, on a weight percent basis, 1.4% Sn, 0.2% Fe, 0.1% Cr. Pitting corrosion resistance of two alloys by ASTM G48 is higher than that of electrochemical method. Passive film formed on Zircaloy-4 is mainly composed of $ZrO_2$, metallic Sn, and iron species regardless of formation environments. Also, passive film formed on Zr alloys shows n-type semiconductic property on the base of Mott-Schottky plot.

Corrosion and Oxidation Behaviors of ion-nitrided tool Steels (이온질화된 공구강 표면의 산화 및 공식거동)

  • Choe Han-Cheol;Lee Ho-Jong;Jeong Yong-Woon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.3
    • /
    • pp.126-135
    • /
    • 2005
  • SKD 11 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness and creep strength as well as excellent oxidation resistance. The ion nitrided tool steel containing Mo results in improvement of corrosion resistance, strength at high temperature and pitting resistance, especially in $Cl^-$ contained environment. But the Mo addition causes a disadvantage such as lower oxidation resistance at elevated temperature. In this study, several effects of ion-disadvantage on the oxidation characteristics for SKD 11 steel with various oxidation temperature were investigated. SKD 11 steels were manufactured by using vacuum furnace and solutionized for 1 hr at $1,050^{\circ}C$. Steel surface was ion nitrided at $500^{\circ}C$ for 1 hr and 5 hr by ion nitriding equipment. ion nitrided specimen were investigated by SEM, OM and hardness tester. Oxidation was carried out by using muffle furnace in air at $500^{\circ}C,\;700^{\circ}C\;and\;900^{\circ}C$ for 1hr, respectively. Oxidation behavior of the ion nitrided specimen was investigated by SEM, EDX and surface roughness tester. The conclusions of this study are as follows: It was found that plasma nitriding for 5 hr at $500^{\circ}C$, compared with ion nitriding for 1 hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear, corrosion resistance and hardness as nitriding time increased. Nitrided SKD 11 alloy for 1hr showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with nitrided SKD 11 alloy for 5 hr. The oxidation surface at $900^{\circ}C$ showed a good corrosion resistance.

Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding (가스 질화를 통한 316L스테인리스강의 내식성 개선)

  • Hyunbin Jo;Serim Park;Jisu Kim;Junghoon Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Austenitic stainless steel 316L has been used a lot of applications because of its high corrosion resistance and formability. In addition, copper brazing is employed to create complex shape of 316L stainless steel for various engineering parts. In such system, copper-based filler metals make galvanic cell at metal/filler metal interface, and it accelerates corrosion of stainless steel. Furthermore, Cu-rich region formed by diffused copper in austenitic stainless steel can promote a pitting corrosion. In this study, we used an ammonia (NH3) gas to nitride the 316L stainless steel for improving the corrosion resistance. The thickness of the nitride (nitrogen high) layer increased with the treatment temperature, and the surface hardness also increased. The potentiodynamic polarization test showed the improvement of corrosion resistance of 316L stainless steel by enhancing the passivation on nitride layer. However, in case of high temperature nitriding, a chromium nitride was formed and its fraction increased, so that the corrosion resistance was decreased compared to the intact 316L stainless steel.

The Effects of Processing Parameters on Surface Hardening Layer Characteristics of Low Temperature Plasma Nitriding of 316L Austenitic Stainless Steel (316L 오스테나이트계 스테인리스강의 저온 플라즈마질화처리시 공정변수가 표면경화층 특성에 미치는 영향)

  • Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A systematic investigation was made on the influence of processing parameters such as gas composition and treatment temperature on the surface characteristics of hardened layers of low temperature plasma nitrided 316L Austenitic Stainless Steel. Various nitriding processes were conducted by changing temperature ($370^{\circ}C$ to $430^{\circ}C$) and changing $N_2$ percentage (10% to 25%) for 15 hours in the glow discharge environment of a gas mixture of $N_2$ and $H_2$ in a plasma nitriding system. In this process a constant pressure of 4 Torr was maintained. Increasing nitriding temperature from $370^{\circ}C$ to $430^{\circ}C$, increases the thickness of S phase layer and the surface hardness, and also makes an improvement in corrosion resistance, irrespective of nitrogen percent. On the other hand, increasing nitrogen percent from 10% to 25% at $430^{\circ}C$ decreases corrosion resistance although it increases the surface hardness and the thickness of S phase layer. Therefore, optimized condition was selected as nitriding temperature of $430^{\circ}C$ with 10% nitrogen, as at this condition, the treated sample showed better corrosion resistance. Moreover to further increase the thickness of S phase layer and surface hardness without compromising the corrosion behavior, further research was conducted by fixing the $N_2$ content at 10% with introducing various amount of $CH_4$ content from 0% to 5% in the nitriding atmosphere. The best treatment condition was determined as 10% $N_2$ and 5% $CH_4$ content at $430^{\circ}C$, where the thickness of S phase layer of about $17{\mu}m$ and a surface hardness of $980HV_{0.1}$ were obtained (before treatment $250HV_{0.1}$ hardness). This specimen also showed much higher pitting potential, i.e. better corrosion resistance, than specimens treated at different process conditions and the untreated one.