• 제목/요약/키워드: Pitching stability

검색결과 54건 처리시간 0.024초

Calculating Dynamic Derivatives of Flight Vehicle with New Engineering Strategies

  • Mi, Baigang;Zhan, Hao;Chen, Baibing
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.175-185
    • /
    • 2017
  • This paper presents new differential methods for computing the combined and single dynamic stability derivatives of flight vehicle. Based on rigid dynamic mesh technique, the combined dynamic stability derivative can be achieved by imposing the aircraft pitching to the same angle of attack with two different pitching angular velocities and also translating it to the same additional angle of attack with two different rates of angle of attack. As a result, the acceleration derivative is identified. Moreover, the rotating reference frame is adopted to calculate the rotary derivatives when simulating the steady pull-up with different pitching angular velocities. Two configurations, the Hyper Ballistic Shape (HBS) and Finner missile model, are considered as evaluations and results of all the cases agree well with reference or experiment data. Compared to traditional ones, the new differential methods are of high efficiency and accuracy, and potential to be extended to the simulation of combined and single stability derivatives of directional and lateral.

자유진동기법을 이용한 공대지 미사일의 동안정성에 관한 연구 (A Study on the Dynamic Stability of Air-to-Ground Missile Using the Free Vibration Technique)

  • 박재현;백승욱;조환기;허원욱
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.61-69
    • /
    • 1999
  • A dynamic stability test was performed to determine dynamic stability derivatives for the pure pitching motion of air-to-ground missile model in the low speed wind tunnel. The free vibration technique was employed to acquire oscillation characteristics of the model for damping coefficients. Damping coefficients are obtained by the method of logarithmic decrement. Results show good damping effects and stability capability at Mach numbers 0.1 and 0.2, with the angle of attack ranging from -15 to +20 degrees.

  • PDF

저상트램 모듈 수량에 따른 아티큘레이션 장치의 적용 검토 (The Application of Articulation Systems based on the Number of Carbody Modules of the Low-Floor Tram)

  • 이재익;장성찬;엄경수;이정율;김국진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.842-848
    • /
    • 2011
  • The low-floor tram is a kind of railway vehicles which is operated on the street way track. For reducing the radius of curvature of the track, the tram consists of some carbody modules, and the articulation systems connect and support these carbody modules. The kind of articulation systems would be the hinge type and the pitching type. The hinge type articulation could allow only the yawing motion of the carbody modules, and the pitching type articulation could allow the pitching and yawing motions of the carbody modules simultaneously. With these function of the articulation systems, the tram could be operated on the horizontal and vertical curvature of the track. The number of each type of articulation could be decided with the number of carbody modules, and the manufacturer would decided the position of each type of the articulation in the view of the stability of carbody modules in the operation condition.

  • PDF

CFD를 이용한 유도탄 덮개 형상의 공력 미계수 예측 (Prediction of Aerodynamic Stability Derivatives of Shell Configuration of Missile Using CFD Method)

  • 강은지
    • 한국군사과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.363-370
    • /
    • 2020
  • In this study, pitching stability derivatives of the conical shell configuration is predicted using commercial CFD code. Unsteady flow analysis with forced harmonic motion of the model is performed using overset mesh. The test is conducted about Basic finner missile configuration. The static and dynamic stability derivatives are good agreement with available experimental data. As the same way, a conical shell is analyzed in Mach number 1.6 and various reduced frequency. The static and dynamic derivatives are obtained from the time-pitching moment coefficient histories in each of four cases of mean angle of attack. The variation of reduced frequency is not affected static and dynamic derivatives. Increasing the mean angle of attack, static derivatives are increased slowly. Comparison of the Cm curves at the steady and unsteady state results shows that the Cm curve including the damping effect is lower than otherwise case, approximately 9-18 %.

주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구 (Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle)

  • 김철호;김창선;이승현
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.

곤충 모방 날갯짓 비행체의 안정적인 수직 이륙 비행 구현 (Demonstration of Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System)

  • 판 호앙 부;트롱 쾅 트리;구옌 쿠옥 비엣;박훈철;변도영;구남서
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.76-80
    • /
    • 2012
  • This paper demonstrates how to implement inherent pitching stability in an insect-mimicking flapping-wing system for vertical takeoff. Design and fabrication of the insect-mimicking flapping-wing system is briefly described focusing on the recent modification. Force produced by the flapping-wing systems is estimated using the UBET (Unsteady Blade Element Theory) developed in the previous work. The estimation shows that the wing twist placed in the modified system can improve thrust production for about 10 %. The estimated thrust is compared with the measured thrust, which proves that the UBET provides fairly good estimations for the thrust produced by the flapping-wing systems. The vertical takeoff test shows that inherent pitching stability can be implemented in an insect-mimicking flapping-wing system by aligning the aerodynamic force center and center of gravity.

비평면 지면효과를 받는 날개들의 종방향 정안정성 (Longitudinal Static Stability of Wings Flying Over Nonplanar Ground Surfaces)

  • 김학기;조진수;한철희
    • 한국항공우주학회지
    • /
    • 제34권7호
    • /
    • pp.12-17
    • /
    • 2006
  • 채널 및 레일과 같은 비평면 지면 위를 비행하는 날개들의 정상상태 공력특성 및 종방향 정안정성을 경계요소법을 사용하여 연구하였다. 펜스의 높이가 날개의 위치보다 높을 경우, 펜스와 날개와의 거리가 작아질수록 양력이 증가하고 피칭다운 모멘트가 커졌다. 레일의 폭이 날개 스팬보다 넓을 때, 레일의 높이가 낮을수록 양력이 증가하고 유도항력이 감소하였다. 종방향 정안정성 측면에서 단일 날개의 경우 비평면 지면보다 평지에서 안정한 결과를 나타내었다. 종렬배치형 날개의 경우 채널내를 비행하는 날개가 평지보다 비평면 지면에서 안정적이었다. 본 연구결과는 초고속운송체의 설계에 적용될 수 있을 것으로 기대한다.

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

자이로 효과의 피칭 모션을 고려한 한 바퀴 로봇의 모델 기반 롤링 모션 제어 (Model-Based Rolling Motion Control of an One-wheeled Robot Considering the Pitching Motion of a Gyroscopic Effect)

  • 이상덕;정슬
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.335-341
    • /
    • 2016
  • In general, a yawing motion concept is used for the lateral control of one wheel robot where the gimbal system is located horizontally. In this paper, another concept of the vertically located gimbal system is presented for the same purpose. Although the vertical concept undergoes an instability more easily than the horizontal one, the pitching motion of the gyroscopic effect is considered. Firstly, the trade-off relation between two balancing concepts are investigated by comparing the gyroscopic mechanism. Secondly, the dynamic model for the problem of the proposed concept is derived using the oscillatory inverted stick model. Thirdly, the stability of the model is analyzed using the phase trajectory method. Finally, the control performance of the system by a vibration controller is simulated.

전투기 외부 연료 탱크의 종방향 정안정성 및 투하 궤적 해석 (Analysis of the Longitudinal Static Stability and the Drop Trajectory of a Fighter Aircraft's External Fuel Tank)

  • 강치행;조환기;장영일;이상현;김광연
    • 한국항공우주학회지
    • /
    • 제38권3호
    • /
    • pp.274-279
    • /
    • 2010
  • 본 논문에서는 원 형상에 비해 20% 축소 설계된 수평 핀을 부착한 전투기의 외부 연료 탱크의 정적인 세로 안정성을 해석하고 투하궤적을 분석하였다. 얇은 에어포일의 공력 자료를 이용하여 연료 탱크의 정적 피칭 안정성을 해석한 결과는 풍동 실험 결과와 거의 일치하였다. 연료탱크의 6자유도 운동방정식에 대한 수치적인 모사에서 얻은 낙하 궤적을 실제 모델의 투하 실험 궤적과 비교 분석한 결과 투하 시 항공기의 자세가 연료 탱크의 수직 이동 궤적에는 영향을 미치지 않지만 수평 이동 궤적에는 상당한 영향을 미치게 됨을 알 수 있었다. 이와 같은 이론 해석 및 실험 결과의 분석을 통해 재설계 핀을 부착한 외부 연료 탱크를 비행 중 항공기로 부터 분리할 때 비행운용 규범을 기준으로 수행한다면 항공기의 안전성을 보장할 수 있음이 검증되었다.