• 제목/요약/키워드: Pitching Moment

검색결과 101건 처리시간 0.025초

정지비행 로터 블레이드에 부착된 탭의 공기역학적 효과 (AERODYNAMIC EFFECTS OF THE TAB ON A HOVERING ROTOR BLADE)

  • 강희정;김도형;김승호
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.60-66
    • /
    • 2013
  • Numerical simulation was performed for the rotor blade with fixed tab in hover using an unstructured mesh Navier-Stokes flow solver. The inflow and outflow boundary conditions using 1D momentum and 3D sink theory were applied to reduce computational time. Calculations were performed at several operating conditions of varying collective pitch angle and fixed tab length. The aerodynamic effect of fixed tab length was investigated for hovering efficiency, pitching moment and flapping moment of the rotor blade. The results show that it affects linearly increasing on the pitching moment of the rotor blade but does not affect on the flapping moment. The required power is less than 45kw for ground rotating test in hover. Numerical simulations also show that the vortex generate not only from the tip of the rotor blade but also from the fixed tab on the rotor blade.

파형 곡면 위를 비행하는 2차원 WIG익형의 비정상 압축성 유동 해석 (Unsteady Compressible Flow past an Airfoil near the Moving Surface)

  • 임예훈;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.191-196
    • /
    • 1998
  • A two-dimensional airfoil flying over a wavy wall is calculated by solving the unsteady Euler equation. Unsteady Transonic flow over an NACA00012 airfoil in pitching motion has been computed for code validation. Some numerical results for NACA6409 airfoil under different wave number, wave length, fly height are presented. The numerical results show the variation of lift and pitching moment coefficients are increased as wave length decrease.

  • PDF

파랑 입사각이 장방형 플로팅 함체와 상부 골조에 미치는 효과 (Effect of Incident Angle of Wave on Floating Pontoon and Moment Resisting Frame)

  • 이영욱;김보람
    • 한국항해항만학회지
    • /
    • 제37권2호
    • /
    • pp.221-229
    • /
    • 2013
  • 파랑하중의 입사각의 변화가 직사각형 콘크리트 플로팅 함체 위에 있는 3층 철골 모멘트 연성골조의 모멘트에 미치는 영향을 알아보기 위하여, 파도 주기 5초부터 15초까지 2초 간격으로 동적 유체해석을 수행하였다. 길이방향에 대하여 입사각이 $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$로 증가함에 따라 RAO-Roll에 의한 영향이 증가하는 것으로 나타났다. 파압에 의하여 입사각이 $0^{\circ}$인 경우 길이방향의 골조 모멘트가 크게 증가하였으며, 입사각이 증가함에 따라 파압에 의한 모멘트가 감소하는 것으로 나타났다. 또한 함체의 피칭과 롤링에 의하여 발생되는 가속도 성분에 의하여 상부 철골 모멘트 연성 골조의 모멘트를 산정하였으며, 입사각이 $90^{\circ}$로 작용한 경우에 모멘트의 증가량이 입사각 $0^{\circ}$의 경우보다 크게 나타났다.

상호 작용 계수를 이용한 측추력 제트와 초음속 자유류 상호 작용에 관한 연구 (Analysis of the Interaction Between Side Jet and Supersonic Free Stream Using K-factor)

  • 김민규;이광섭
    • 한국군사과학기술학회지
    • /
    • 제15권1호
    • /
    • pp.101-110
    • /
    • 2012
  • The side jet effects between jet flow and free-stream on a missile body were investigated by experimentally and numerically for modeling aerodynamic coefficients in pitch plane. K-factors for normal force and pitching moment were introduced to estimate the side jet effects. The main parameters of the jet interaction phenomena were angle of attack, jet pressure ratio, Mach number and jet bank angle. The K-factors for normal force coefficient and pitching moment coefficients in pitch plane were analysed.

The Effects of Mean-Line Shape on Longitudinal Stablility of a Wing in Ground Effect

  • Kim, Wu-Joan;Shin, Myung-Soo
    • Journal of Hydrospace Technology
    • /
    • 제2권2호
    • /
    • pp.14-23
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations for turbulent flow around a two-dimensional foil section moving ova. a flat surface (roller plate) is solved. The numerical method utilized the finite-difference schemes in collocated grids and the Baldwin-Lomax model is employed for turbulence closure. Calculations are carried out for three foil sections of different mean-line shape with various height ratio. As a foil approaches the bottom surface, the lift is augmented, while there exist some differences in pitching moment due to mean-line shape. It was found that the S-shaped mean line deteriorates lift characteristics but increases pitching moment to restore the designed height.

  • PDF

2 MW 영구자석 직접 구동형 부유식 스파 부이 풍력 발전기의 피칭 운동해석 (Pitching Motion Analysis of Floating Spar-buoy Wind Turbine of 2MW Direct-drive PMSG)

  • 신평호;경남호;최정철;고희상
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.1-14
    • /
    • 2017
  • A series of coupled time domain simulations considering stochastic waves and wind based on five 1-h time-domain analyses are performed in normal operating conditions. Power performance and tower base Fore-Aft bending moment and pitching motion response of the floating spar-buoy wind turbine with 2 MW direct-drive PMSG have been analyzed by using HAWC2 that account for aero-hydro-servo-elastic time domain simulations. When the floating spar-buoy wind turbine is tilted in the wind direction, maximum of platform pitching motion is close to $4^{\circ}$. Statistical characteristics of tower base Fore-Aft bending moment of floating spar-buoy wind turbine are compared to that of land-based wind turbine. Maximum of tower base Fore-Aft bending moment of floating spar-buoy wind turbine and land-based wind is 94,448 kNm, 40,560 kNm respectively. This results is due to changes in blade pitch angle resulting from relative motion between wave and movement of the floating spar-buoy wind turbine.

Numerical study on aerodynamics of banked wing in ground effect

  • Jia, Qing;Yang, Wei;Yang, Zhigang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.209-217
    • /
    • 2016
  • Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part I. 제트 유동특성 영향 (Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part I. Jet Flow Condition Effect)

  • 민병영;이재우;변영환;현재수;김상호
    • 한국항공우주학회지
    • /
    • 제32권8호
    • /
    • pp.64-71
    • /
    • 2004
  • 측 추력(Lateral Jet)을 이용하여 자세를 제어하는 미사일 주위의 초음속 유동장 해석을 위하여 삼차원 Navier-Stokes 코드 (AADL3D)를 개발하고, 이를 이용한 수치해석 연구를 수행하였다. 분출 제트 압력, 분출 마하수 등을 포함하는 제트의 유동특성이 미사일에 미치는 수직력 및 피칭모멘트에 대한 영향을 알아보기 위한 사례연구를 수행하였으며, 공력 해석 결과 제트의 분출 압력과 분출 마하수 변화에 따른 서로 다른 수직력과 모멘트 변화 양상 및 그 원인을 확인할 수 있었다. 또한 대부분의 수직력 손실과 피칭모멘트 발생은 노즐 후방의 저압영역에 의한 것이며, 동일한 제트 추력일지라도 분출 마하수가 큰 경우가 분출 압력이 큰 경우보다 모멘트 발생 최소화에 유리함을 확인하였다.

주행차량의 공기역학적 주행안전성 평가를 위한 알고리즘 개발연구 (Development of a Numerical Algorithm for the Evaluation of Aerodynamic Driving Stability of a Vehicle)

  • 김철호;김창선;이승현
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.265-272
    • /
    • 2016
  • The objective of vehicle aerodynamic design is on the fuel economy, reduction of the harmful emission, minimizing the vibration and noise and the driving stability of the vehicle. Especially for a sedan, the driving stability of the vehicle is the main concern of the aerodynamic design of the vehicle indeed. In this theoretical study, an evaluation algorithm of aerodynamic driving stability of a vehicle was made to estimate the dynamic stability of a vehicle at the given driving condition on a road. For the stability evaluation of a driving vehicle, CFD simulation was conducted to have the rolling, pitching and yawing moments of a model vehicle and compared the values of the moments to the resistance moments. From the case study, it is found that a model sedan running at 100 km/h in speed on a straight level road is stable under the side wind with 45 m/s in speed. But the different results may be obtained on the buses and trucks because those vehicles have the wide side area. From the case study of the model vehicle moving on 100 km/h speed with 15 m/s side wind is evaluated using the numerical algorithm drawn from the study, the value of yawing moment is $608.6N{\cdot}m$, rolling moment $-641N{\cdot}m$ and pitching moment $3.9N{\cdot}m$. These values are smaller than each value of rotational resistance moment the model vehicle has, and therefore, the model vehicle's driving stability is guaranteed when driving 100 km/h with 15 m/s side wind.

공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구 (A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;길병래;조권회;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.