• Title/Summary/Keyword: Pitch-based activated carbon fibers

Search Result 21, Processing Time 0.017 seconds

Selective Separation of $CO_2/CH_4$ by Pore Structure Modification of Activated Carbon Fiber (활성탄소섬유의 기공구조 변형을 이용한 $CO_2/CH_4$의 선택적 분리 기술)

  • Moon, S.H.;Park, S.Y.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1027-1034
    • /
    • 2007
  • This research was focused on the selective separation of $CO_2$ or $CH_4$ from mixture of these gases, by controlling the size of pore or pore gate. Pitch based activated carbon fibers(ACF) were used as adsorbents. The size of pore gate was controlled by the molecule having similar size to that of pore opening. After the adsorption of adsorbate on pore surface, planar molecules such as benzene and naphthalene covered the pore gate. The slow release of adsorbate from the pores covered by planar molecules makes apertures between planar molecules covering pore gate and this structure can be fixed by rapid pyrolysis. The control of pore gate using benzene as covering molecules could not accomplished due to the simultaneous volatilization of benzene and adsorbate$(CO_2)$ caused by similar temperatures of benzene volatilization and adsorbate desorption. Therefore we replaced benzene with naphthalene looking for the stability at a $CO_2$ desorption temperature. The naphthalene molecule was adsorbed on the ACF up to 15% of ACF weight and showed no desorption until $100^{\circ}C$, indicating that the molecule could be used as a good cover molecule. Naphthalene could cover almost all the pore gate, reducing BET surface area from 753 $m^2/g$ to 0.7 $m^2/g$. A mixed gas$(CO_2:CH_4=50:50)$ was adsorbed on the naphthalene treated OG-7A ACF. The amount of $CO_2$ adsorption increased with total pressure, whileas thai of $CH_4$ was not so much influenced on the pressure, indicating that $CO_2$ made more compounds on the ACF surface along with total pressure increase. The most $CO_2$ and the least $CH_4$ were adsorbed in the condition of 0.4 atm, resulting in the highly pure $CH_4$ left in ACF.