• Title/Summary/Keyword: Pitch pine decline

Search Result 5, Processing Time 0.016 seconds

Multi-temporal Analysis of High-resolution Satellite Images for Detecting and Monitoring Canopy Decline by Pine Pitch Canker

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • Unlike other critical forest diseases, pine pitch canker in Korea has shown rather mild symptoms of partial loss of crown foliage and leaf discoloration. This study used high-resolution satellite images to detect and monitor canopy decline by pine pitch canker. To enhance the subtle change of canopy reflectance in pitch canker damaged tree crowns, multi-temporal analysis was applied to two KOMPSAT multispectral images obtained in 2011 and 2015. To assure the spectral consistency between the two images, radiometric corrections of atmospheric and shadow effects were applied prior to multi-temporal analysis. The normalized difference vegetation index (NDVI) of each image and the NDVI difference (${\Delta}NDVI=NDVI_{2015}-NDVI_{2011}$) between two images were derived. All negative ΔNDVI values were initially considered any pine stands, including both pitch canker damaged trees and other trees, that showed the decrease of crown foliage from 2011 to 2015. Next, $NDVI_{2015}$ was used to exclude the canopy decline unrelated to the pitch canker damage. Field survey data were used to find the spectral characteristics of the damaged canopy and to evaluate the detection accuracy from further analysis.Although the detection accuracy as assessed by limited number of field survey on 21 sites was 71%, there were also many false alarms that were spectrally very similar to the damaged canopy. The false alarms were mostly found at the mixed stands of pine and young deciduous trees, which might invade these sites after the pine canopy had already opened by any crown damages. Using both ${\Delta}NDVI$ and $NDVI_{2015}$ could be an effective way to narrow down the potential area of the pitch canker damage in Korea.

Growth Decline of Pitch Pine Caused by Soil Acidification in Seoul Metropolitan Area (首都圈地域에서 土壤의 酸性化에 의한 리기다소나무의 生長 減少)

  • Rhyu, Tae-Cheol;Kim, Kee-Dae;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.287-297
    • /
    • 1994
  • To elucidate the cause of growth decline of pitch pine (Pinus rigida) in Seoul, tree density, tree age and physico-chemical properties of soils were investigated at 33 sites of pitch pine forests in metropolitan Seoul, its vicinity and rural areas. The physical properties of soils except for soil texture in Seoul did not differ from those in rural areas. pH values, base saturation, and Ca and Mg contents of soils in Seoul, however, were significantly lower than those in suburbs and rural areas. In contrast, soluble Al and $S0_4^{2-}-S$ contents in Seoul were higher than those in rural areas. Low pH of forest soils in Seoul and suburbs seems to be caused by acid deposition. According to multiple regression analysis, growth of pitch pine in Seoul was affected by several factors in the following order: soil bulk density < Al content of soils < tree density < Mg contents of soil < tree age. We concluded that the acidification of forest soil can be a predisposing factor for the growth decline of pitch pine in metropolitan areas.

  • PDF

Water Deficit of Pitch Pines Caused by Superficial Rooting and Air Pollutants in Seoul and Its Vicinity

  • Joon-Ho kim;Rhyu, Tae-Cheol
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.309-316
    • /
    • 1994
  • To make regional comparisons of water status of pitch pine, the temporal changes of water status in pitch pine were investigated at different areas; urban Seoul (heavily polluted area), surburb of Seoul (lightly polluted area), and rural area (control). The effects of air pollutants, acid rain and chemical properties of soil on water deficit in pitch pine were also investiaged. Water content of needles growing at polluted areas were usually lower than that at unpolluted area. Water saturation deficit of needles growing at polluted areas were usually higher than that at unpolluted area especially in dry season. These results indicated that water in needles growing at polluted areas were usually more deficient than that at unpolluted area, and were more deficient in April than other months. At polluted areas, the older the needles were, the more quickly transpirated the water in the needle was. At unpolluted areas, however, water in old needles was not so quickly transpirated as those at polluted areas. Water potential of needles of pitch pine seedlings treated with simulated acid rain (SAR) of pH 3.5 decreased more quickly than that of needles treated with SAR of pH 5.6. Loss of water through epicuticular layer was greater in the following order: magnesium deficiency+100 $\mu$M aluminium>100$\mu$M aluminium>magnesium deficiency>control. In addition to Mg deficiency and Al toxicity, growth decline of pitch pine widely occurring in polluated Seoul could to a large extent be due to cuticle degredation and abnormal vertical distribution of fine roots, which lead to water stress, particularly in dry seasons.

  • PDF

Growth Decline and Abnormal Vertical Distribution of Fine Roots of Pitch Pine in Seoul Metropolitan Area (首都圈地域에서 리기다소나무 生長 減少와 잔뿌리의 非正常 垂直分布)

  • Rhyu, Tae-Cheol;Kee-Dae Kim;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.261-275
    • /
    • 1994
  • The annual ring widths of tree and the vertical distribution of fine roots were investigated at 33 sites of pitch pine forests in Seoul, its vicinity and rural areas. The annual ring widths among 16 - 20 year-old pitch pines in urban areas were significantly lower than those in rural areas. The annual ring widths for the latest 5 years (1985-1989) for the age class of 11-20, 21-30 and 31-40 year old pines increased in the following order for all the age classes: urban areas< suburbs

  • PDF

Cation Deficiencies in Needles and Fine Roots of Pitch Pine in Seoul Metropolitan Area (首都圈地域에서 리기다소나무 잎과 잔뿌리 속의 陽이온 부족)

  • Rhyu, Tae-Cheol;Kim, Kee-Dae;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.277-286
    • /
    • 1994
  • The contents of major elements were determined in current-year and previous-year needles and fine roots of pitch pine (Pinus yzgida) at 33 sites in Seoul and its vicinity. Contrary to Ca and Al in needles, N, P, Mg and K contents in current-year needles were higher than those in previous-year needles. The N, P, K and Al contents in current-year needles in Seoul were not significantly different from those in rural areas. In contrast, Ca and Mg contents in needles in Seoul were significantly lower than those in suburbs and rural areas. The N /Ca and N /Mg ratios in needles in urban Seoul were higher than those in rural areas. Mg contents in fine roots in soil of 0-5 cm depth increased along with distance from the center of Seoul, while Al contents in fine root in soil of 5-10 cm depth decreased along with distance from the center of Seoul. Al contents in fine roots in soil layer in Seoul and suburbs were higher than those in rural areas. Al contents in fine roots in litter layer were 1 /3 - 1 /2 times lower than those in soil layer for all areas. A1 content in fine roots in deep soil was higher than that in top soil. Therefore growth decline of pitch pine in Seoul and suburbs was thought to be caused by Ca and Mg deficiency in plant tissues and Al toxicity to fine roots. Abnormal vertical distribution of fine roots of pitch pine in Seoul and its vicinity were interpreted as the result of growth reduction of fine roots by Al toxicity in deep layer of acid soil.

  • PDF