• Title/Summary/Keyword: Pitch damper

Search Result 25, Processing Time 0.022 seconds

Study on the Vibration Analysis of Damper Clutch Spring (댐퍼 클러치 스프링의 진동 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.22-30
    • /
    • 2011
  • This study analyzes harmonic vibration with natural frequency according to the configuration of damper clutch. In the case of double spring, equivalent stress at same direction of the revolution at inner and outer coil spring is over 30% as compared with at its opposite direction. Natural frequency or harmonic response with maximum deformation in case of the less coil pitch is below 3Hz as compared with in case of the more coil pitch. As the coil pitch of damper spring as the case 2 or 4 becomes smaller, its mass and deformation can be large. In these cases, spring constant and natural frequency become smaller. In the case 5 or 6 of double spring at natural vibration or harmonic response, the frequency becomes over 300Hz. As the result of this study is applied by the design of damper spring, the damage at its connected part is prevented and the durability can be predicted.

Ground Resonance Instabilities Analysis of a Bearingless Helicopter Main Rotor (무베어링 헬리콥터 로터의 지상공진 불안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.352-357
    • /
    • 2012
  • The ground resonance instability of a helicopter with bearingless main rotor hub were investigated. The ground resonance instability is caused by an interaction between the blade lag motion and hub inplane motion. This instability occurs when the helicopter is on the ground and is important for soft-inplane rotors where the rotating lag mode frequency is less than the rotor rotational speed. For the analysis, the bearingless rotor was composed of blades, flexbeam, torque tube, damper, shear restrainer, and pitch links. The fuselage was modeled as a mass-damper-spring system having natural frequencies in roll and pitch motions. The rotor-fuselage coupling equations are derived in non-rotating frame to consider the rotor and fuselage equations in the same frame. The ground resonance instabilities for three cases where are without lead-lag damper and fuselage damping, with lead-lag damper and without fuselage damping, and finally with lead-lag damper and fuselage damping. There is no ground resonance instability in the only rotor-fuselage configuration with lead-lag damper and fuselage damping.

Control System Design of NREL 5MW Wind Turbine (NREL 5MW 풍력터빈의 제어시스템 설계)

  • Nam, Yoonsu;Im, Changhee
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.31-40
    • /
    • 2012
  • This paper introduces a methodology for NREL 5MW wind turbine, which is the variable speed and variable pitch(VSVP) control system. This control strategy maximizes the power extraction capability from the wind in the low wind speed region and regulates the wind turbine power as the rated one for the high wind speed region. Also, pitch control efficiency is raised by using pitch scheduling.Torque schedule is made of torque table depending on the rotor speed. Torque control is used for vertical region in a torque-rotor speed chart. In addition to these, mechanical loads reduction using a drive train damper and exclusion zone on a torque schedule is tried. The NREL 5MW wind turbine control strategy is comprised by the generator torque and blade pitch control. Finally, proposed control system is verified through GH Bladed simulation.

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR 댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Boon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.460-465
    • /
    • 2008
  • This paper proposes a new type of MR (magentorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is establishes by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

  • PDF

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • This paper proposes a new type of MR(magnetorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is established by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the imposed vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

Stability augmentation of helicopter rotor blades using passive damping of shape memory alloys

  • Yun, Chul-Yong;Kim, Dae-Sung;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.137-147
    • /
    • 2006
  • In this study, shape memory alloy damper with characteristics of pseudoelastic hysteresis for helicopter rotor blades are investigated. SMAs can be available in damping augmentation of vibrating structures. SMAs show large hysteresis in the process of pseudoelastic austenite-martensite phase transformation which takes place while subjected to loading above the austenite finish temperature. Since SMAs display pseudoelastic hysteresis behavior over large strain ranges, a significant amount of energy dissipation is possible. A damper can be designed with SMA wires prestressed to a baseline level somewhere in the middle of the pseudoelastic stress range. An experimental study of the effects of pre-strain and cyclic strain amplitude as well as frequency on the damping behavior of pseudoelastic shape memory alloy wires are performed. The effects of the shape memory alloy damper on aeroelastic and ground resonance stability of helicopter are studied. In aeroelastic stability, the dynamic characteristics of blades related to pitch angle and the amplitude of lag motion for the rotor equipped with SMA damper were examined. The performance of SMA damper on ground resonance instability are presented through the frequencies and modal damping with respect to rotating speed.

A Study on the Torsional Vibration of propulsion Shafting System with Controllable Pitch Propeller (가변익 프로펠러를 갖는 추진축계의 비틀림진동에 관한 연구)

  • 이돈출
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.626-634
    • /
    • 1998
  • Controllable pitch propeller(CPP) is usually adopted for easy and effective engine controls of a ship in a port. Unfortunately the torsional vibration may occur by a certain variation of engine torque and the major resonance peak may exist within the maximum continuous rating(MCR) In these cases an additional stress concentration on the oil passages such as longitudinal slots notches and circular holes of an oil distributor shaft(ODS) occurs by the torsional vibration of the CPP shaft. In this paper an analysis for the fatigue limit of an ODS system of the 5S70MC engine in a crude oil carrier is done by applying FEM and empirical formulas. Furthermore the additional stress on the ODS is investigated by analyzing the torsional vibration of the shaft system and a control method in which a tuning damper is adopted is introduced in the case of the additional stress exceeds the fatigue limit. The validity of analysis method is verified by comparing the results acquired by an actual measurement of the vibratory torque for the above ODS

  • PDF

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.

Development of an Active Suspension System for Passenger Cars( I ) : Construction of Prototype Car (승용차용 능동제어식 현가시스템의 개발(1) : 실험차량의 구성)

  • Hong, Y.S.;Hwang, Y.;Kim, D.Y.;Kim, Y.B.;Shim, J.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.73-82
    • /
    • 1994
  • Low-band type active suspension system is implemented on a passenger car. Level. roll, pitch and bouncing motion of body are controlled by a digital controller. Sky-hook damper is applied to control bouncing motion. This paper describes overall construction of the system, design of hydraulic system, sensor system, controller, and control scheme. Performance of prototype car has been evaluated on a test track and reported in the second paper.

  • PDF