• Title/Summary/Keyword: Pitch

Search Result 4,245, Processing Time 0.034 seconds

Study on the Improvement of BGA Solderability in Electroless Nickel/Gold Deposit (무전해 Ni/Au 도금에서의 BGA Solderability 특성 개선에 관한 연구)

  • 민재상;황영호;조일제
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.55-62
    • /
    • 2001
  • With a spread of BGA, CSP and fine pitch devices, the need of flatter surface finish in bare board is becoming more critical in solderability. The electroless Ni/Au plating has a solution of these needs and also has being spread to apply to surface finish for bare board in many electronic goods. But, the electroless Ni/Au plating had several issues such as Ni oxidation and phosphorous contents. Before this study, we studied on the effect of BGA solderability in electroless Ni/Au plating and chose some major factors such as the oxidation property of NiP plating and warpage of board. Firstly, we made test board with various plating conditions and improved the plating property through the improvement of NiP oxidation reducing P content. Also, we minimized the warpage of board with the improvement of inner layer structure and the analysis of warpage. For the evaluation of solderability, we analyzed the warpage of board and the plating property after mounting BGA on the board with optimizing conditions. The solder joint of BGA is investigated by SEM(Scanning Electronic Microscope) and OM(Optical Microscope). The composition of joint is used by EDS(Energy Dispersive Spectroscopy). We analyzed the fracture strength and mode by ball shear teser.

  • PDF

Towards 3D Modeling of Buildings using Mobile Augmented Reality and Aerial Photographs (모바일 증강 현실 및 항공사진을 이용한 건물의 3차원 모델링)

  • Kim, Se-Hwan;Ventura, Jonathan;Chang, Jae-Sik;Lee, Tae-Hee;Hollerer, Tobias
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.84-91
    • /
    • 2009
  • This paper presents an online partial 3D modeling methodology that uses a mobile augmented reality system and aerial photographs, and a tracking methodology that compares the 3D model with a video image. Instead of relying on models which are created in advance, the system generates a 3D model for a real building on the fly by combining frontal and aerial views. A user's initial pose is estimated using an aerial photograph, which is retrieved from a database according to the user's GPS coordinates, and an inertial sensor which measures pitch. We detect edges of the rooftop based on Graph cut, and find edges and a corner of the bottom by minimizing the proposed cost function. To track the user's position and orientation in real-time, feature-based tracking is carried out based on salient points on the edges and the sides of a building the user is keeping in view. We implemented camera pose estimators using both a least squares estimator and an unscented Kalman filter (UKF). We evaluated the speed and accuracy of both approaches, and we demonstrated the usefulness of our computations as important building blocks for an Anywhere Augmentation scenario.

Analysis of the Dynamic Characteristics on Aerodynamic Loads of Wind Turbine Blade with New Airfoil KA2 (신규 익형 KA2가 적용된 풍력 블레이드의 공력 하중에 대한 동특성 해석)

  • Kang, Sang-Kyun;Lee, Ji-Hyun;Lee, Jang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.63-70
    • /
    • 2015
  • This paper proposes a novel airfoil named "KA2" for the blade of the wind turbine systems. Dynamic loads characteristics are analyzed and compared using aerodynamic data of ten airfoils including the proposed airfoil. The blade is divided into the sixteen elements in the longitudinal direction of the blade for applying the Blade Element Method Theory (BEMT) method, and in each element, torque, thrust, and pitching moment are calculated using turbulent time varying wind speed and aerodynamic data of each wing. Additionally, each force and torque is accumulated in the whole region of the blade for the estimation of representative values. The magnitude of such forces is comparatively analyzed for different airfoils. The angle of attack is constant below the rated wind speed due to the fact that the tip speed ratio is kept at the constant value, and it increases in the region of over rated wind speed as the tip speed ratio decreasing with constant rated rpm and increasing wind speed. Such increase in the angle of attack causes the changes of the force acting on the airfoil with different characteristics of lift and drag in the stall region of each different airfoil. Even though the mean wind speed is in the rated speed in a given time, because of the turbulence, it has either the over rated or under rated speed most of the time. Furthermore, the dynamic properties of each force are analyzed in this rated wind speed in order to objectively understand the dynamic properties of the blades which are designed based on the different airfoils. These dynamic properties are also compared by the standard deviation of time varying characteristics. Moreover, the output characteristics of the wind turbine are investigated with different airfoils and wind speeds. Based on these investigations, it was revealed that the proposed airfoil (KA2) is well applicable to the blade with passive pitch control system.

THE EFFECT OF VARIOUS SURFACE TREATMENT METHODS ON THE OSSEOINTEGRATION (임플랜트의 표면처리 방법이 골유착에 미치는 영향에 관한 연구)

  • Choi Jeong-Won;Kim Kwang-Nam;Heo Seong-Joo;Chang Ik-Tae;Han Chong-Hyun;Baek Hong-Gu;Choi Yong-Chang;Wennerberg Ann
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.71-83
    • /
    • 2001
  • The purpose of this study was to compare the effects of various surface treatments by measuring removal torque on bone healing around titanium implants. 40 Screw-shaped cp titanium implants with length of 4mm, outer diameter of 3.75mm, and pitch-height of 0.5mm were used Group 1 was left as machined(control), Group 2 was blasted with $50{\mu}m\;Al_2O_3$, group 3 was blasted and etched in etching solution($NH_4OH : H_2O_2:H_2O= 1 : 1 : 5$) at $90^{\circ}C$ for 1 minute group 4 was blasted and oxidated under pure oxygen at $800^{\circ}C$. The implant surface roughness was analyzed with SEM and CLSM(Confocal Laser Scanning Microscope) and implants were placed in proximal tibial metaphysis of 10 New Zealand White rabbits. After 3 months of healing period, removal torque of each implant was measured to compare bone healing around implant. The results obtained were as follows 1. In SEM view, blasting increased the roughness of the surface, but etching of that rough surface decreased the roughness due to the removal of the tip of the peak. Oxidation also decreased the roughness due to formation of needle-like oxide grains on the implant surface. 2. The Sa value from CLSM was least in the machined group($0.47{\mu}m$), greatest in blasted group($1.25{\mu}m$), and the value decreased after etching($0.91{\mu}m$) and oxidation($0.94{\mu}m$). 3. The removal torque of etched group(24.5Ncm) was greater than that of machined group(16.7Ncm) (P<0.05), and was greatest in the oxidated group(40.3Ncm) and the blasted group(34.7Ncm).

  • PDF

STUDIES OF OSSEOINTEGRATED IMPLANT-MODELS ON STRESS DISTRIBUTION (치과용 골유착성 임플랜트 고정체 형상의 응력 분산에 관한 연구)

  • Han, Chong-Hyun;Chun, Hung-Jae;Jung, Sin-Young;Heo, Seong-Joo;Choi, Yong-Chang;Chung, Chong-Pyung;Ku, Young;Ryu, In-Chul;Kim, Myung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.526-543
    • /
    • 2000
  • Finite element analyses were performed to study effects on stress distribution generated in jaw bone for various shapes of dental implants: plateau type, plateau with small radius of curvature, triangular thread screw type in accordance with ISO regulations and square thread screw filleted with small radius partially. It was found that square thread screw filleted with small radius was more effective on stress distribution than other dental implants used in analyses. Additional analyses were performed on the implant with square thread screw filleted with small radius for very-ing design parameters, such as the width of thread end, the height of the thread of the implant and load direction, to determine the optimum dimensions of the implant. The highest stress concentration occurred at the region in jaw Pone adjacent to the first thread of the implant. The maximum effective stress induced by a 15 degree oblique load of 100 N was twice as high as the maximum effective stress caused by an equal amount of vertical load. Stress distribution was more effective in the case when the width of thread end and the height of thread were p/2 and 0.46p, respectively, where p is the pitch of thread. At last, using tensile force calculated from the possible insert torque without breading bone thread, finite element analysis was performed on the implant to calculate pre-stress when the primary fixation of the implant was operated in jaw bone. The maximum effective stress was 136.8 MPa which was proven to be safe.

  • PDF

A Study on Smart Factory System Design for Screw Machining Management (나사 가공 관리를 위한 스마트팩토리 시스템 설계에 관한 연구)

  • Lee, Eun-Kyu;Kim, Dong-Wan;Lee, Sang-Wan;Kim, Jae-joong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.329-331
    • /
    • 2018
  • In this paper, we propose a monitoring system that starts with the supply of raw materials for threading, is processed into a lathe machine, and checks for defects of the product are automatically performed by the robot with Smart Factory technology through assembly and disassembly. Completion check according to the production instruction quantity and production instruction is made by checking the production status according to whether or not the raw material is worn by the displacement sensor, and checking the pitch and the contour of the processed female and male to determine OK and NG. The robotic system acts as a relay for loading and unloading of raw materials, pallet transfer, and overall process, and it acts as an intermediary for organically driving. The location information of the threaded products is collected by using the non-contact wireless tag and the energy saving system Production efficiency and utilization rate were checked. The environmental sensor collects the air-conditioning environment data (temperature, humidity), measures the temperature and humidity accurately, and checks the quality of product processing. It monitors and monitors the driving hazard level environment (overheating, humidity) of the product. Controls for CNC and robot module PLC as a heterogeneous system.

  • PDF

System Identification and Pitch Control of a Planing Hull Ship with a Controllable Stern Intercepter (능동제어가 가능한 선미 인터셉터가 부착된 활주선형 선박의 시스템 식별과 자세 제어에 관한 연구)

  • Choi, Hujae;Park, Jongyong;Kim, Dongjin;Kim, Sunyoung;Lee, Jooho;Ahn, Jinhyeong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.401-414
    • /
    • 2018
  • Planing hull type ships are often equipped with interceptor or trim tab to improve the excessive trim angle which leads to poor resistance and sea keeping performances. The purpose of this study is to design a controller to control the attitude of the ship by controllable stern interceptor and validate the effectiveness of the attitude control by the towing tank test. Embedded controller, servo motor and controllable stern interceptor system were equipped with planing hull type model ship. Prior to designing the control algorithm, a model test was performed to identify the system dynamic model of the planing hull type ship including the stern interceptor. The matrix components of model were optimized by Genetic Algorithm. Using the identified model, PID controller which is a classical controller and sliding mode controller which is a nonlinear robust controller were designed. Gain tuning of the controllers and running simulation was conducted before the towing tank test. Inserting the designed control algorithm into the embedded controller of the model ship, the effectiveness of the active control of the stern interceptor was validated by towing tank test. In still water test with small disturbance, the sliding mode controller showed better performance of canceling the disturbance and the steady-state control performance than the PID controller.

Singing Voice Synthesis Using HMM Based TTS and MusicXML (HMM 기반 TTS와 MusicXML을 이용한 노래음 합성)

  • Khan, Najeeb Ullah;Lee, Jung-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.5
    • /
    • pp.53-63
    • /
    • 2015
  • Singing voice synthesis is the generation of a song using a computer given its lyrics and musical notes. Hidden Markov models (HMM) have been proved to be the models of choice for text to speech synthesis. HMMs have also been used for singing voice synthesis research, however, a huge database is needed for the training of HMMs for singing voice synthesis. And commercially available singing voice synthesis systems which use the piano roll music notation, needs to adopt the easy to read standard music notation which make it suitable for singing learning applications. To overcome this problem, we use a speech database for training context dependent HMMs, to be used for singing voice synthesis. Pitch and duration control methods have been devised to modify the parameters of the HMMs trained on speech, to be used as the synthesis units for the singing voice. This work describes a singing voice synthesis system which uses a MusicXML based music score editor as the front-end interface for entry of the notes and lyrics to be synthesized and a hidden Markov model based text to speech synthesis system as the back-end synthesizer. A perceptual test shows the feasibility of our proposed system.

Current Sensing Trench Gate Power MOSFET for Motor Driver Applications (모터구동 회로 응용을 위한 대전력 전류 센싱 트렌치 게이트 MOSFET)

  • Kim, Sang-Gi;Park, Hoon-Soo;Won, Jong-Il;Koo, Jin-Gun;Roh, Tae-Moon;Yang, Yil-Suk;Park, Jong-Moon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.220-225
    • /
    • 2016
  • In this paer, low on-resistance and high-power trench gate MOSFET (Metal-Oxide-Silicon Field Effect Transistor) incorporating current sensing FET (Field Effect Transistor) is proposed and evaluated. The trench gate power MOSFET was fabricated with $0.6{\mu}m$ trench width and $3.0{\mu}m$ cell pitch. Compared with the main switching MOSFET, the on-chip current sensing FET has the same device structure and geometry. In order to improve cell density and device reliability, self-aligned trench etching and hydrogen annealing techniques were performed. Moreover, maintaining low threshold voltage and simultaneously improving gate oxide relialility, the stacked gate oxide structure combining thermal and CVD (chemical vapor deposition) oxides was adopted. The on-resistance and breakdown voltage of the high density trench gate device were evaluated $24m{\Omega}$ and 100 V, respectively. The measured current sensing ratio and it's variation depending on the gate voltage were approximately 70:1 and less than 5.6 %.

Effect of Fine Alumina Filler Addition on the Thermal Conductivity of Non-conductive Paste (NCP) for Multi Flip Chip Bonding (멀티 플립칩 본딩용 비전도성 접착제(NCP)의 열전도도에 미치는 미세 알루미나 필러의 첨가 영향)

  • Jung, Da-Hoon;Lim, Da-Eun;Lee, So-Jeong;Ko, Yong-Ho;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.2
    • /
    • pp.11-15
    • /
    • 2017
  • As the heat dissipation problem is increased in 3D multi flip chip packages, an improvement of thermal conductivity in bonding interfaces is required. In this study, the effect of alumina filler addition was investigated in non-conductive paste(NCP). The fine alumina filler having average particles size of 400 nm for the fine pitch interconnection was used. As the alumina filler content was increased from 0 to 60 wt%, the thermal conductivity of the cured product was increased up to 0.654 W/mK at 60 wt%. It was higher value than 0.501 W/mK which was reported for the same amount of silica. It was also found out that the addition of fine sized alumina filler resulted in the smaller decrease in thermal conductivity than the larger sized particles. The viscosity of NCP with alumina addition was increased sharply at the level of 40 wt%. It was due to the increase of the interaction between the filler particles according to the finer particle size. In order to achieve the appropriate viscosity and excellent thermal conductivity with fine alumina fillers, the highly efficient dispersion process was considered to be important.