• 제목/요약/키워드: Piston open

검색결과 37건 처리시간 0.022초

유압전동장치(HST)의 압력맥동 특성 (Pressure Ripple Characteristics of Hydrostatic Transmission (HST))

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.222-227
    • /
    • 1998
  • The paper proposes a new method for measuring the flow ripple generated by an axial piston pump and motor in a hydrostatic transmission. The method is based on dynamic characteristics between pressure and flow ripple in the pipeline. Also, the self-checking functions develop for the evaluation of accuracy and dynamic response of estimated results by the method proposed here. The experiment carry out open circuit type hydrostatic transmission. By using the self-checking functions, the validity of the method is investigated by comparison with the measured and estimated flow and pressure ripples, and good agreement is achieved.

  • PDF

동해 울릉분지 남서부 천부퇴적층의 퇴적학적 특성 및 지화학 연구

  • 김일수;류병재;박명호;정태진;이영주;유강민
    • 한국석유지질학회:학술대회논문집
    • /
    • 한국석유지질학회 2001년도 제8차 학술발표회 발표논문집
    • /
    • pp.56-62
    • /
    • 2001
  • 울릉분지 남서부 해역에서 채취한 두 개의 피스톤 코어 (piston core) 시료를 이용하여 퇴적학 및 지화학적 특성을 연구하였다. 코어는 제4기말의 이질 퇴적물로 대부분 구성되어 있고, 테프라 (tephra layer)와 사질 퇴적물이 일부 협재되어 나타난다. 기존 확인된 울릉분지의 테프라를 이용하여 층서 대비를 한 결과, 두 코어는 대양보다는 높은 퇴적률 (10-12cm/kyr)을 갖는다. 이는 코어가 약 4만 4천년 전의 기록부터 시작하고 있음을 의미한다. 동위원소 층서 2 (마지막 빙기) 중에 형성된 구간에서는 저탁류의 영향을 많이 받은 여러 종류의 퇴적상들이 교호하여 나타난다. 코어의 하부 구간에서는 가스의 방출에 의하여 형성된 것으로 사료되는 수평균열이 다수 관찰된다. 두 코어에서 측정된 유기탄소 (organic carbon) 함량은 평균 $1.8\% $(0.1-4.5\%)$으로 열린 바다 (open sea) 퇴적물의 유기탄소 함량보다 높다. 이는 Termination I 시기 때 해수면 상승으로 인해 산소가 다소 결핍된 환경으로 전이되면서 유기탄소의 양이 증가하였음을 보여주는 것으로 해석된다.

  • PDF

차량 장착상태에서의 가스 스프링 동적 특성 연구 (A Study on the Dynamic Characteristics of the Gas Spring on the Automotive Application)

  • 이춘태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.15-20
    • /
    • 2015
  • Unlike a typical metal spring, a gas spring uses compressed gas contained in a cylinder and compressed by a piston to exert a force. A common application includes automobiles where gas spring are incorporated into the design of open struts that support the weight of tail gate. They are also used in furniture such as office chairs, and in medical and aerospace applications. The gas spring works by the application of pressurized gas (nitrogen) contained in a cylinder. The internal pressure of the gas spring greatly exceeds atmospheric pressure. This differential in pressure exists at any rod position and generates an outward force on the rod, making the gas spring extend. In this paper, we investigated the dynamic characteristics of a gas spring on an automotive tail gate system.

인체 호흡 모사를 위한 기계적 장치 연구 (The Study of Mechanical Simulation for Human Respiratory System)

  • 지석환;이문규;이태수;최윤순;오승권
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권4호
    • /
    • pp.323-328
    • /
    • 2008
  • A patient with respiratory disorders such as a sleep apnea is increasing as the obese patient increase on the modern society. Positive Airway Pressure (PAP) devices are used in curing patient with respiratory disorders and turn out to be efficacious for patients of 75%. However, these devices are required for evaluating their performance to improve their performance by the mechanical breathing simulator. Recently, the mechanical breathing simulator was studied by the real time feedback control. However, the mechanical breathing simulator by an open loop control was specially required in order to analyze the effect of flow rate and pressure after operating the breathing auxiliary devices. Therefore the aims of this study were to make the mechanical breathing simulator by a piston motion and a valve function from the characteristic test of valve and motor, and to duplicate the flow rate and pressure profiles of some breathing patterns: normal and three disorder patterns. The mechanical simulator is composed cylinder, valve, ball screw and the motor. Also, the characteristic test of the motor and the valve were accomplished in order to define the relationship between the characteristics of simulator and the breathing profiles. Then, the flow rate and pressure profile of human breathing patterns were duplicated by the control of motor and valve. The result showed that the simulator reasonably duplicated the characteristics of human patterns: normal, obstructive sleep apnea (OSA), mild hypopnea with snore and mouth expiration patterns. However, we need to improve this simulator in detail and to validate this method for other patterns.

태양열 물펌프의 실험적 성능분석 (Experimental Analysis on the Performance of a Solar Powered Water Pump)

  • 김영복;손재길;이승규;김성태;나우정;이양근
    • Journal of Biosystems Engineering
    • /
    • 제29권6호
    • /
    • pp.521-530
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which electrical power is not available. The average solar radiation power is $3.488\;kWh/(m^2{\cdot}day)$ in Korea. In this study, the experimental system of the water pump driven by the radiation energy were designed, assembled, tested and analyzed fur realizing the solar powered water pump. Energy conversion ken radiation energy to mechanical energy by using n-pentane as operating material was done and the water pumping cycles were able to be continued. The quantity of the water pumped per cycle ranged from 2 L to 10 L depending on the level of the valve open area far the vapour supply. The average quantity was about 4,366 cc. The thermal efficiency was about $0.018\%$. The pressure level of the n-pentane vapour in flash tank was about $110\~150\;kPa$ and that in the water tank was $93\~130\;kPa$. The pressure in the condenser during cycles was maintained as about 70 kPa. The condensation of the n-pentane vapour in the water tank was increased with the cycles even though the internal and external insulation were done. Air tank performance was better with increasing of the water piston displacement and the water could be pumped with the water piston displacement becoming higher than 6,500 cc.

인몰드 코팅을 위한 2액형 폴리우레탄 공급장치 개발 (Development of two-component polyurethane metering system for in-mold coating)

  • 서봉현;이호상
    • Design & Manufacturing
    • /
    • 제10권2호
    • /
    • pp.18-23
    • /
    • 2016
  • Injection molded thermoplastic parts may need to be coated to facilitate paint adhesion, or to satisfy other surface property requirements, such as appearance, durability, and weather resistance. In this paper, a two-component polyurethane metering system was developed for the simultaneous injection and surface coating of a plastic substrate. The system was composed of storage tanks, feed pumps, axial piston pumps, mixing head. The tank was designed to be double-jacket structured and fabricated for polyol and isocyanate, respectively. A temperature chamber was used to maintain the material temperature to be $80^{\circ}C$ during flowing from storage tank to mixing head. Inside the chamber, feed pump, low pressure filter, high pressure pump, high pressure filter, pressure sensor, flow meter were installed. A mixing head of L-type was used for homogeneous mixing of polyol and isocyanate. Inside the mixing head, a cartridge heater and a temperature sensor were installed to control the temperature of the materials. The flow rate of axial-piston pump was controlled by using closed-loop feedback control algorithm. The input flow-rates were compared with the measured values. The output error was 6.7% for open-loop control, whereas the error was below 2.2% for closed-loop control. In addition, the pressure generated through mixing-head nozzle increased with increasing flow rate. It was found that the pressure drop between metering pump and mixing-head nozzle was almost 10 bar.

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

정상상태에서 카뷰레터 더미모델의 스로틀 개도에 따른 압력특성 (The characteristics of suction pressure by throttle opening of the carburetor dummy at steady state)

  • 조형문;김병국;최영하;윤석주;한종규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.711-714
    • /
    • 2008
  • The objective of this paper is to know the characteristics of pressure through a simplified typical carburetor used in small engines at the different throttle opening conditions. The carburetor is the device responsible for creating the right air-fuel mixture according to the different engine operating conditions. It is activated by the static or the dynamic pressure. The carburetor dummy is geometrically similar of LPG brush-cutter engine's diaphragm carburetor and is made of acrylic. Suction system gives body to crankcase vacuum using the vacuum pump and throttle opening conditions are controled by transfer device. Carburetor venturi throat and fuel charging tube diameter is each 20mm, 4.1mm. The result of the work presents an unprecedented phenomenon of suction pressure variation inside the carburetor venturi. It is predicted that these unprecedented pressure variation be caused by minor losses; sudden contraction or expansion, open or partially closed and so on.

  • PDF

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

리니어엔진을 이용한 파워팩의 운전조건에 따른 발전출력에 관한 연구 (A Study for Generating Power on Operating Parameters of Powerpack utilizng Linear Engine)

  • 오용일;김강출;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.183-190
    • /
    • 2012
  • The research shows the experiment results according to the combustion characteristics and configuration of the linear generator of powerpack for the generating power applying the 2-stroke compact linear engine. The powerpack used in this paper consists of 2-stroke linear engine, linear generator and air compressor parts. For identifying the combustion characteristics and generating power of linear engine, some parameters were varied sucha as electric load, fuel input calorie, spark timing delay and equivalence ratio. Also generating power was confirmed at each operation conditions, when the air gap length of linear generator part was changed as each 1.0 mm and 2.0 mm. During the all operations, intake air was inputted under the wide open throttle. Mass flow rate of air and fuel was changed using mass flow controller, after these were premixed by premixture device, and then premixed gas was supplied directly into each cylinder. As a result, piston frequency and combustion characteristics were different at each conditions according to parameters affecting the combustion such as fuel input calorie, resistive load, spark timing delay and equivalence ratio. Consequently, these had an effect on generating power.