• Title/Summary/Keyword: Piston cooling

Search Result 75, Processing Time 0.017 seconds

Effect of Cooling Water Capacity on the Engine Performance for Small Diesel Engine (냉각수(冷却水) 용량(容量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Myung, Byung Soo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.265-278
    • /
    • 1986
  • This study was attempted to improve the thermal efficiency of 6 kW water-cooled diesel engine on power tiller. The engine performance tests were conducted to find out the effect of cooling water capacity of 2700cc, 2800cc, 2900cc, 3000cc, 3100cc on power, brake specific fuel consumption (BSFC), torque, temperature of cooling water and lubricating oil and friction losses of the engine with D. C. dynamometer. The results obtained in the study are summarized as follows: 1. The performance of the engine tested was adequated to Korea Industrial Standard but actual economy power was 10% higher than the labeled rated power of the engine. The BSFC of the engine tested 297.8g/kW-h which is belong a little higher level than hreign products. The temperature of cooling water was $101^{\circ}C$ which is higher than SAE standard ($88^{\circ}C$) 2. The friction losses of engine tested was 3.656 kW at 2200 rpm of rated rpm (piston speed 6.97m/sec) and is higher than those of foreign products. 3. When the cooling water capacity was increased from 2700cc to 3100cc the power output of the engine was increased from 6.7 kW to 7.13 kW at the rate of 6.4% and also the torque of the engine was increased from 28.85 N.m to 30.76 N.m at the rate of 6.39%. 4. When the cooling water capacity was increased from 2700cc to 3100cc, the BSFC was decreased 6.9g/kW-h from 310.9g/kW-h to 304.1g/kW-h, and after one half hour operation with full load, the temperature of cooling water was decreased $13^{\circ}C$ from $101^{\circ}C$ to $88^{\circ}C$ and also the temperature of lubricant oil was decreased $6.4^{\circ}C$ from $76.7^{\circ}C$ to $70.4^{\circ}C$. 5. The mechanical efficiency was increased from 70.08% to 71.08% when the cooling water capacity was increased from 2700cc to 3100cc.

  • PDF

Development of the Pulse Tube Cryocooler for Infrared Detector (적외선 검출기용 맥동관 극저온 냉동기 기술개발)

  • Yeom, Hankil;Park, Seoung-Je;Hong, Hong-Ju;Ko, Junseok;In, Sehwan;Kim, Hyo-Bong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • Most of the Stirling cryocoolers used for infrared detector cooling in domestic is imported. Because the cooler has a high price, short life and poor durability, demand for the coolers continues steadily. However, the cooler is highly related to defense and space technology, technology transfer or co-development with the countries having experties in cooler design is very limited. The pulse tube cooler to be developed in this study is such that the mechanical piston in low temperature actuating part is replaced by the gas piston and linear compressor is adopted, which results in low vibration, long life and better durability. It is expected that development of the pulse tube cooler will not only improve our technology to the level of advanced countries, but also enhance the skills in designing and manufacturing of the infrared detector.

Past sea surface temperature of the East Sea inferred from alkenone

  • Lee, Kyung-Eun;Kim, Kyung-Ryul
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • We measured the alkenone concentration of bulk sediments from a piston core collected from the Ulleung Basin in the East Sea in order to reconstruct past sea surface temperatures (SST). Sediment ages are well constrained by AMS $^{14}C$ dates of the planktonic foraminifera Globigerina bulloides. Coretop alkenone SST calibration with modern surface temperatures and sediment trap dat (Hong et al., 1996) indicate that the SST estimated from alkenones most likely represent the temperatures of late fall. Downcore variations in the alkenone saturation index indicate that between 19 and 15 kyr BP the surface waters were about $3^{\circ}C$ warmer than today. Between 15 and 11 kyr BP, the temperatures were about $3^{\circ}C$ lower than today. A rapid SST increase of about $3^{\circ}C$ occurred at approximately 10 kyr BP. After considering the factors which might influence the SST reconstruction from the $U^{k'}_{37}$ values, we conclude that the alkenone temperature estimates are reliable. The reason for glacial warming in the East Sea is not clear, although there is a possibility that it could be caused by shift in the season of maximum alkenone production from summer during the last glaciation to late fall during the Holocene. Cooling between 15 and 11 kyr BP may be due to inflow of cold water into the East Sea such as via the Oyashio Current or ice-melt water. Warming at the early Holocene could be due to inflow of the Tsushima Current into the East Sea through the Korea Strait.

Effect of Cu-Additions on the Hand-Over Layer of an Aluminum Alloy - Hardening for the Top Ring Groove of Automotive Piston by the Plasma Transferred Arc Welding Process -

  • Moon, J.H.;Seo, C.J.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.58-62
    • /
    • 2001
  • The surface of AC8A Ah alloy was modified by adding the Cu powder using a Plasma Transferred Arc (PTA) welding process. Under the optimum fabricating conditions, the modified surface of AC8A Ah alloy was observed to possess the sound microstructure with a minimum porosity. Hardness and wear resistance properties of the as-fabricated alloy were compared with those of the 76 heat-treated one. In case of the as-fabricated alloy, the hardness of the modified layer was twice that of the matrix region. Although significant increase in the hardness of the matrix region was observed after T6 heat treatment, the hardness of the modified layer was not observed to change. The wear resistance of the modified layer was significantly increased compared to that of the matrix region. The microstructure of a weld zone and the matrix region were investigated using the optical microscope, scanning electron microscope (SEM), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). The primary and eutectic silicon in the weld zone were finer and more curved than in the matrix region, while some precipitates has had been found therein. According to the TEM observation, the predominant precipitate present in the weld zone was the $\theta$'phase, which is precipitated during cooling by rapid solidification in PTA welding process. Improvement of hardness and wear properties in the weld zone in the as-fabricated condition can be explained based on the presence of $\theta$’precipitates and fine primary and eutectic silicon distribution.

  • PDF

Computer Simulation for Die Filling Behavior of Semi-Solid Slurry of Mg Alloy

  • Lee, Dock-Young;Moon, Jung-Hwa;Seok, Hyun-Kwang;Kim, Sung-Bin;Kim, Ki-Bae
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In order to develop the semi-solid forming technology for magnesium alloy the rheological and thixotropic behavior of Mg alloy slurry with varying shear rates and cooling rates was investigated and simulated with considering the viscosity based on microstructures and processing variables. The viscosity of slurry of Mg alloy (AZ91D) in semi-solid region was exponentially increased with a solid fraction, and was decreased with increasing a shear rate. In order to analyze precisely the rheological behavior, the ANYCAST program modified with the Carreau model and the different heat transfer coefficient between the cast and mold was used to simulate the flow behavior of Mg semi-solid slurry during the injection into a casting mold in a high pressure diecasting machine. The simulated rheological behavior of Mg alloy slurry was matched well with the experimental results.