• Title/Summary/Keyword: Piston Valve

Search Result 225, Processing Time 0.033 seconds

Friction Characteristics between the Cylinder Block and the Spherical Valve Plate in Hydraulic Axial Piston Pump (유압 액셜 피스톤 펌프에서 실린더 블록과 구면 밸브 플레이트 사이의 마찰 특성)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, it is need to know the various characteristics in the sliding contact parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump in experimentally. Results are arranged as follow; (1) friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio in valve plate. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

Dynamic Analysis of a Discharge Valve for Electrodynamic Oscillating Compressor (전동형 진동식 압축기 토출밸브의 동적해석)

  • 김형진;박윤식
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.615-622
    • /
    • 2000
  • Discharge valve mechanism for an electrodynamic-oscillating compressor is different from that of a conventional reciprocating compressor. It has a larger discharge port area, heavier valve mass and stiffer valve spring comparing with the reciprocating one. Since the motion of piston is not kinematically restricted as in conventional reciprocating compressors, the stroke of the piston can change sensitively with supplied boltage and load. Thus piston can impact with discharge valve occasionally. This work deals on dynamic analysis of discharge valve considering all of those different characteristics. Impact is considered by a spring-mass model, and the pressure fluctuation at the both sides of the valve is also included considering the discharge port area and valve spring preload. It is assumed that piston moves in the region of between top and bottom dead center not by calculating piston motion from an electrodynamic equation but by getting values through experiment. Discharge pressure fluctuation is calculated using Helmholtz modeling. Finally, dynamic model for a discharge valve is constructed. In order to validate the model analysis results, the valve motion is experimentally measured and compared with analysis.

  • PDF

Friction characteristics between the cylinder block and the valve plate in axial piston pump (액셜 피스톤 펌프에서 실린더 블록과 밸브 플레이트 사이의 마찰 특성)

  • 김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.249-255
    • /
    • 1998
  • To increase the efficiency of the hydraulic axial piston pumps, we have to know the various characteristics in the sliding parts of them. Especially, friction characteristics between the cylinder block and the valve plate in the hydraulic axial piston pumps plays an important role to high power density. In this paper, we tried to clarify friction characteristics between the cylinder block and the spherical valve plate in bent-axis-type axial piston pump by using of modeling experiment. The main results of this study are these; (1) Friction torque between the cylinder block and the spherical valve plate has a proportional relation to weight or rotational speed, and is strongly affected by temperature. (2) Friction torque strongly depends on force balance ratio. (3) In this experiment, lubrication condition between the cylinder block and the spherical valve plate is under hydrodynamic lubrication.

  • PDF

Flow Characteristics of Pressure Balancing Valve with Various Piston Shapes (피스톤 형상변화에 따른 압력평형밸브의 유동특성연구)

  • Kim, Tae-An;An, Byeong-Jae;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2168-2173
    • /
    • 2003
  • Pressure balancing valve is one of important control devices, which is fully automatic and no manual controls, regulating or adjustments are needed. It is typically used to maintain constant temperature of working fluid in power and chemical plants and domestic water supply systems. Pressure balancing valve is composed of body, cylinder and balancing piston. Therefore, the balancing piston shapes are important design parameters for a pressure balancing valve. In this study, numerical and experimental analyses are carried out with two different balancing piston shapes. Especially, the distribution of static pressure is investigated to calculate the flow coefficient($C_v$). The governing equations are derived from making using of three-dimensional Navier-Stokes equations with standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using commercial code, PHOEIC, the pressure and flow fields in pressure balancing valve are depicted.

  • PDF

A Study on Manually and Continuously Variable Impact Force Control Device Development for Hydraulic Breakers (유압브레이커의 수동 무단 타격력 제어기구 개발에 대한 연구)

  • Kang, Young Ky;Jang, Ju Seop
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.46-53
    • /
    • 2020
  • In this paper, the development of a manually and continuously variable impact force control mechanism for hydraulic breakers was studied. Generally, a hydraulic breaker has one or two piston strokes. Hydraulic breakers, which have two strokes, have two valve-switching ports and make short and long piston strokes. The piston stroke valve controls the piston stroke by opening and closing a short stroke-switching port. The short piston stroke mode is used to break soft rock, concrete, or asphalt. This stroke control valve system is not popular for small hydraulic breakers mounted on 1 to 14-ton excavators. To preserve the carrier-like excavator, proper breaking force is needed, and it can be easily controlled by multiple piston stroke control valves. The easiest way to control these breakers is to use several switching ports and valves but they are not easy to install in small hydraulic breakers and are expensive. To use only one switching port and valve, a method can be used to change the open area of the switching port to delay valve switching. This method provides multiple piston strokes.

Measurment of Fluid Film Thickness on The Valve Plate in Oil Hydraulic Axial Piston Pumps (Part II : Spherical Design Effects)

  • Kim Jong-Ki;Kim Hyoung-Eui;Lee Yong-Bum;Jung Jae-Youn;Oh Seok-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.655-663
    • /
    • 2005
  • Tribological characteristics in the sliding parts of oil hydraulic piston pumps are very important in increasing overall efficiency. In this study, the fluid film between the valve plate and the cylinder block was measured by using a gap sensor and the mercury-cell slip ring unit under real working conditions. To investigate the effect of the valve shape, we designed three valve plates each having a different shape. One of the valve plates was without bearing pad, another valve plate had bearing pad and the last valve plate was a spherical valve plate. It was noted that these three valve plates observed different aspects of the fluid film characteristics between the cylinder block and the valve plate. The leakage flow rates and the shaft torque were also investigated in order to clarify the performance difference between these three types of valve plates. From the results of this study, we found that the spherical valve plate estimated good fluid film patterns and good performance more than the other valve plates in oil hydraulic axial piston pumps.

Pressure characteristics at the land of valve plate in the oil hydraulic axial piston pump (유압 피스톤 펌프의 밸브 플레이트 랜드부 압력 특성)

  • 최형완;김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.221-227
    • /
    • 2000
  • The design of the valve plate is most important to increase efficiency in the oil hydraulic axial piston pump. A theoretical study was carried out to clarify the pressure characteristics at the land of the valve plate in the oil hydraulic axial piston pump. Dynamic pressure acts on the land of the valve plate was computed numerically with discharge pressure, rotational speed and swash plate angle. Pressure distribution between the valve plate and the cylinder block also was obtained with dynamic pressure. The results are applicable to improve the design technique of the valve plate in the oil hydraulic axial piston pump.

  • PDF

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.

Development of cryogenic free-piston reciprocating expander utilizing phase controller

  • Cha, Jeongmin;Park, Jiho;Kim, Kyungjoong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • A free-piston reciprocating expander is a device which operates without any mechanical linkage to a stationary part. Since the motion of the floating piston is only controlled by the pressure difference at two ends of the piston, this kind of expander may indispensably require a sophisticated active control system equipped with multiple valves and reservoirs. In this paper, we have suggested a novel design that can further reduce complexity of the previously developed cryogenic free-piston expander configuration. It is a simple replacement of both multiple valves and reservoirs by a combination of an orifice valve and a reservoir. The functional characteristic of the integrated orifice-reservoir configuration is similar to that of a phase controller applied in a pulse tube refrigerator so that we designate the one as a phase controller. Depending on the orifice valve size in the phase controller, the different PV work which affects the expander performance is generated. The numerical model of this unique free-piston reciprocating expander utilizing a phase controller is established to understand and analyze quantitatively the performance variation of the expander under different valve timing and orifice valve size. The room temperature experiments are carried out to examine the performance of this newly developed cryogenic expander.

A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (2) (사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(2))

  • Kim, Jeong-Hwa;Shin, Mi-Jung;Kim, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.76-81
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part II, which consists of a structural interpretation of the internal flow path of the discharge plenum of the valve block. The simple model result reviewed in Part I was incorporated into the valve block model and five different design changes were reviewed as part of the study on the structural improvement of the internal flow path of the valve block.