• 제목/요약/키워드: Piston Pump

검색결과 213건 처리시간 0.025초

유압펌프에서 발생되는 고주파 유량맥동의 고응답 계측

  • 이상기;김도태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.267-272
    • /
    • 1995
  • The paper describes an approach for measuring flow ripple generated by oil hydraulic axial piston pumps. Flow ripple has periodic waveforms due to the cyclic nature of a pump's operation, and interacts with the connected hydraulic systems such as pipes and components to produce a pressure ripple, also known as fluid-borne noise. It is indispensable to measure a flow ripple because increasing of vibration and noise caused by a flow ripple has become a point to be considered and has need of solving these problems. The measurement of flow ripple with high frequencies from oil hydraulic axial piston pumps is msde by using the remote instantaneous flow rate measurement method. As a result, the reverse flow through the relief groove in valve plate has an important effect upon a flow ripple generated by a pumps.

  • PDF

유압모터 구면 정압베어링의 마찰특성에 관한 연구 (The study on the friction characteristics of spherical hydrostatic bearing for hydraulic piston motor)

  • 함영복;최영호;김성동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.647-650
    • /
    • 2001
  • In case of bent axis type axial piston hydraulic pump or motor, hydrostatic bearing used to achieve the lubrication effect on the mechanical sliding contact areas between the following pairs ; piston shoe and swash plate, valve plate and cylinder block, piston and cylinder block, etc. In this research, we designed two pairs of spherical ball joint in witch connecting rod piston end. The one is not hydrostatic bearing, the other is designed with spherical hydrostatic bearing in point of view minimum pumping power loss. By varying supply pressure on the piston, we can know that it is possible to reduce the friction torque by using hydrostatic bearing designed one. Finally, by comparing the results of driving torque between the two models, it was verified that the spherical hydrostatic bearing is well designed.

  • PDF

사판식 피스톤 펌프의 밸브 플레이트 설계와 예압에 따른 맥동 (Pulsation According to Pre-Compression Sections and Valve Plate Design for a Swash Plate Type Piston Pump)

  • 사진웅;정원지;배준형;이정민
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.89-95
    • /
    • 2016
  • This study investigated the design factors of the opening area in order to consider the kinematic stability of a valve plate, conducting an analysis of the reduction effects of pressure pulsation and flow ripple depending on the design factors, using the $SimulationX^{(R)}$ (Germany) hydraulic analysis program. Further, we performed a structure analysis to confirm the kinematic stability of the valve plate in a swash plate type piston pump, and analyzed the effects of pulsation on a 1-step V-type notch, 2-step V-type notch, and 2-step U-type notch to determine the effects of pulsation reduction. Finally, we show the effectiveness of our proposed design of the pre-compression sections on a valve plate in terms of low pulsation by using the hydraulic analysis program, $SimulationX^{(R)}$.

등온모델에 의한 자유행정 Vuilleumier열펌프의 동특성 해석 (Analysis of Dynamic Characteristics for a Free-Piston Vuilleumier Heat Pump Based on the Isothermal Model)

  • 유호선
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.467-478
    • /
    • 1994
  • This paper deals with dynamic behaviors of a free-piston Vuilleumier heat pump system, which are characterized by stroke of each diplacer/stroke ratio, operating frequency and phase angle. Based on the Isothermal Model, basic equations of motion are derived and linearized. In particular, dependence of damping coefficients of the dynamic parameters are taken into account in the formulation, which does not bring additional difficulties in the analysis. In order to investigate effects of design conditions on the dynamic parameters are taken into account in the formulation, which does not bring additional difficulties in the analysis. In order to investigate effects of design conditions on the dynamic characteristics, calculations are performed for the prototype made by Schulz and Thomas and results are qualitatively compared with their data obtained from the analysis as well as the experiment. It appears that they made a mistake in evaluating the hysteresis loss of the gas spring in their analysis. And, the present results show a better agreement with their experimental data than those by their own analysis. Although there are some unresolved aspects such as frequency variations with respect to the mean pressure and the hot space temperature, it is expected that the present analysis may be an effective tool for prediction of dynamics of a free- pistion VM machine at the preliminary design stage.

가변용량형 사판식 액셜피스톤 펌프의 모델링 및 사판 강인 제어기 설계 (Modeling and Robust Controller Design of a Swash Plate for Swash Plate Type Variable Displacement Axial Piston Pump)

  • 박성환;박용호;이지민;김종식
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.75-81
    • /
    • 2008
  • A robust controller is proposed for regulating effectively the pressure of control cylinder of swash plate type variable displacement axial piston pump. In order to design a precise and robust pressure control system, a mathematical model for swash plate control system is identified by the signal compression method. Based on the identified mathematical model, an $H_{\infty}$ robust swash plate controller is designed which is robust to the variation of the load pressure. The precise and robust swash plate control characteristics are verified by experiments.

REDUCTION OF PRESSURE RIPPLES USING A PARALLEL LINE IN HYDRAULIC PIPELINE

  • KIM K. H.;JANG J. S.;JUNG D. S.;KIM H. E.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.65-70
    • /
    • 2005
  • Pressure ripples, which are inevitably generated by a fluctuation of flow rate caused by a pump mechanism, include noises and vibrations in hydraulic pipeline. These noises and vibration deteriorate the stability and accuracy of hydraulic systems. The accumulator and hydraulic attenuator are normally used to reduce the pressure ripples. In this study, a parallel line is introduced to the hydraulic pipeline for the hydraulic system with a bent-axis piston pump as a method to reduce the pressure ripples. The dynamic characteristics of the hydraulic pipeline with a parallel line are analyzed by a transfer matrix in the frequency domain. The usefulness of the hydraulic pipeline with a parallel line was ascertained by experiment and simulation. The results from the experiment and simulation show that the hydraulic pipeline with a parallel line were effective in reducing the pressure ripples.

Ballistic Range의 작동과정에 대한 수치 해석적 연구 (Computational Study of the Operating Processes of a Ballistic Range)

  • ;강현구;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.68-71
    • /
    • 2007
  • A computational study has been performed using a chimera scheme to study the various operating processes inside a ballistic range. The compression flow fields in the pump tube and projectile motion in the launch tube are captured for various piston masses and diaphragm rupture pressures. The effect of a shock tube in between the pump tube and launch tube is analyzed. The results are compared with available experimental data. It is noted that, by adding a shock tube in between the pump tube and launch tube, the peak pressure in the ballistic range can be reduced without appreciable reduction in the velocity of the projectile.

  • PDF

사판식 유압 피스톤 펌프의 슬리퍼와 사판 간의 윤활 특성 (Characteristics of Lubrication between Slipper and Swashplate in Swashplate Type Hydraulic Piston Pump)

  • 조인성
    • Tribology and Lubricants
    • /
    • 제29권3호
    • /
    • pp.186-191
    • /
    • 2013
  • Hydraulic systems are used to transform mechanical energy into fluid energy and vice versa. They are widely applied in various industries; e.g., they are used in automobiles, public works, rockets, machine tools, heavy construction equipment, and airplanes. Hydraulic pumps are used to transform the energy in these systems. In this study, with the basic operation principles as a starting point, I attempted to clarify how the shape of a slipper affects the lubrication characteristics under practical conditions. A swashplate with a tilt angle of zero and capable of rotating motion was used, along with other devices. A slipper was located at 45 mm eccentricity from the center of the swashplate. The results of this experiment indicated that the shape of the bottom surface of a slipper affects the load capacity, leakage flow, and lubrication characteristics and that the slipper is one of the most important parts for improving the pump efficiency.

차세대 신형원자로의 피동형 안전 주입장치를 위한 프리피스톤 스터링 펌프의 동특성 모델 (Dynamic Modeling of the Free Piston Stirling Pump for the Passive Safety Injection of the Next Generation Nuclear Power Plant)

  • Lee, Jae-Young
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 추계 학술발표회 논문집
    • /
    • pp.149-154
    • /
    • 1999
  • This paper describes a passive safety injection system with free piston Stirling pump working withabundant decay heat in the nuclear reactor during the hypothetical accident. The water column in the tube assembly connected from the hot chamber to the cold chamber in the pump oscillates periodically due to thermal volume changes of non-condensable gas in each chamber. The oscillating pressure in the water column is converted into the pumping power with a suction-and-bleed type valve assembly. In this paper a dynamic model describing the frequency of oscillation and pumping pressure is developed. It was found that the pumping pressure is a function of the temperature difference between the chambers. Also, the frequency oscillation depends on the length of the tube with water column.

  • PDF

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • 제1권2호
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.