• Title/Summary/Keyword: Piston Bowl

Search Result 33, Processing Time 0.027 seconds

Influence of Piston Bowl Geometry on Combustion of a Diesel/CNG Reactivity Controlled Compression Ignition Engine (디젤/천연가스 반응성제어 압축착화 엔진에서 피스톤 형상에 따른 연소 특성)

  • Kim, Hyunsoo;Kim, Wooyeong;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • The reactivity controlled compression ignition (RCCI) is the technology that provides two different types of fuel to the combustion chamber with the advantage of significantly reducing particulate matter and nitrogen oxides emissions. However, due to the characteristics of lean combustion, combustion efficiency is worsened. The conventional type of pistons for conventional diesel combustion (CDC) has mostly been used in the researches on RCCI. Because the pistons for CDC are optimized to enhance flow and target spray, the pistons are unsuitable for RCCI. In this study, a piston that is suitable for RCCI is designed to improve combustion efficiency. The new piston was designed by considering the factors such as squish geometry, bowl depth, and surface area. The experiment was carried out by fixing the energy supply to 0.9kJ/cycle and 1.5kJ/cycle respectively. The two pistons were quantitatively compared in terms of thermal efficiency and combustion efficiency.

Computational Analysis of the Effects of Spray Parameters and Piston Shape on Syngas-Diesel Dual-Fuel Engine Combustion Process

  • Ali, Abubaker Ahmed M.M.;Kabbir, Ali;Kim, Changup;Lee, Yonggyu;Oh, Seungmook;Kim, Ki-seong
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.192-204
    • /
    • 2018
  • In this study, a 3D CFD analysis method for the combustion process was established for a low calorific value syngas-diesel dual-fuel engine operating under very lean fuel-air mixture condition. Also, the accuracy of computational analysis was evaluated by comparing the experimental results with the computed ones. To simulate the combustion for the dual-fuel engine, a new dual-fuel chemical kinetics set was used that was constituted by merging two verified chemical kinetic sets: n-heptane (173 species) for diesel and Gri-mech 3.0 (53 species) for syngas. For dual-fuel mode operations, the early stage of combustion was dominated by the fuel burning inside or near the spray plume. After which, the flame propagated into the syngas in the piston bowl and then proceeded toward the syngas in the squish zone. With the baseline injection system and piston shape, a significant amount of unburned syngas was discharged. To solve this problem, effects of the injection parameters and piston shape on combustion characteristics were analyzed by calculation. The change in injection variables toward increasing the spray plume volume or the penetration length were effective to cause fast burning in the vicinity of TDC by widening the spatial distribution of diesel acting as a seed of auto-ignition. As a result, the unburned syngas fraction was reduced. Changing the piston shape with the shallow depth of the piston bowl and 20% squish area ratio had a significant effect on the combustion pattern and lessened the unburned syngas fraction by half.

Study on the Thermal Deformation Characteristics of the Automotive Diesel Engine Piston (자동차용 디젤엔진 피스톤의 열변형 특성에 관한 연구)

  • 이교승;이진호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.162-173
    • /
    • 1997
  • A 3-dimensional finite element model was developed for the analysis of the automotive diesel engine piston. The model, which consists of a full piston to accomodate the eccentric bowl in the piston crown, is used to calculate steady state operating temperature, thermal stress and thermal deformation of the piston. Roundness measurement tests, which are new approaches to the analysis of piston abrasion and deformation, were done for the comparision of two states of a piston-before and after operation. Numerical prediction shows good agreement with roundness measurement test results.

  • PDF

A Study on the Numerical Analysis of Behavior of Spray Droplets and Internal Flow Field of Cylinder in Diesel Engine (디젤기관의 실린더내 유동 및 분무액적 거동의 수치적 연구(I))

  • 장영준;박호준;전충환;김진원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.35-46
    • /
    • 1992
  • In this study, we calculated gas flow fields and distribution of fuel droplet and mass fraction using the CONCHAS-SPRAY code which modified to execute in IBM PC and changed three important factors, injection rate pattern (BASIC, I, II, III), different bowl shape and spray type. Especially vortices which be influenced by fuel-air mixing process, evaporation and flame propagation are generated more strongly in the bowl-piston type combustion chamber than in the flat-piston type. As the spray type changes, it is found that conical type produced large and strong vortices and fuel droplets are effictively diffused into the entire combustion chamber. As the injection rate pattern changes I, II, III based on BASIC type, we confirmed that End-of-Injection Effect strongly influence on droplets life time.

  • PDF

Analysis of Spray and Flow Fields for Development of Spark-ignited Direct Injection Engine (가솔린 직분식 엔진의 연소실 개발을 위한 분무 및 유동장 해석)

  • Choi, K.H.;Park, J.H.;Lee, N.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.202-209
    • /
    • 1998
  • For development of SDI(Spark-ignited Direct Injection) engine, stratified mixture formation with adequate strength at spark plug was required in wide range of engine operating conditions. So, spray structure under high ambient pressure and spray distribution after impingement on piston bowl in motoring engine was visualized by using laser equipments. Also, incylinder bulk flow structure was measured by using PIV (Paiticle Image Velocimetry) system. Counter-rotating tumble port and bowl piston was found effective to conserve bulk motion directed to spark plug in compression stroke. In addition, mask attached near valve seat in intake port was proposed to attenuate conventional tumble component and enhance counter-rotating tumble component.

  • PDF

Flow analyses of a diesel engine with various piston shapes (피스톤 형상에 따른 디젤엔진 내부의 유동해석)

  • Ki, Yong-Duck;Park, Hyung-Koo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.992-997
    • /
    • 2003
  • The flow characteristics along a intake/compression process are very important for the combustion process. The intake/compression flow fields are related to the piston shape of engine. The flow fields are analysed by using the ICEM-CFD IC3M code for the rapid mesh-generation and by using the STAR-CD code for the calculations. The influences of the piston bowl shapes were investigated. The results showed that piston shapes had influences on a intake/compression flow and offered the definite basic data in a design side.

  • PDF

The Shape Optimal Design of Marine Medium Speed Diesel Engine Piston (박용(舶用) 중속(中速) 디젤엔진 피스톤의 형상최적설계(形狀最適設計))

  • Lee, Jun-Oh;Seong, Hwal-Gyeng;Cheon, Ho-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.59-70
    • /
    • 2008
  • Polynomial is used to optimize crown bowl shape of a marine medium speed diesel engine piston. The primary goal of this paper is that it's for an original design through a thermal stress and highest temperature minimum. Piston is modeled using solid element with 6 design variables defined the positional coordinate value. Global optimum of design variables are found and evaluated as developed and integrated with the optimum algorithm combining genetic algorithm(GA) and tabu search(TS). Iteration for optimization is performed based on the result of finite element analysis. After optimization, thermal stress and highest temperature reduced 0.68% and 1.42% more than initial geometry.

A Study on In-cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상에 관한 연구)

  • 김기성;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.362-374
    • /
    • 2002
  • For the purpose of development of a GDI engine, the in-cylinder phenomena, such as the spray behaviors, fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used far the measurements of fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the in-cylinder phenomena were investigated. As a result, it was found that the injected fuel collided with the bottom of the bowl and moved upward along the exhaust side wall of piston bowl. This fuel vapor played an important role in the instance of spark ignition. The unburned fuel and flame characteristics were greatly influenced by the injector specifications.

In-Cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상 연구)

  • 김기성;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.75-90
    • /
    • 2001
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the in-cylinder phenomena, such as the spray behaviors and fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurements of the fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the fuel distributions and combustion characteristics were investigated. As a result, it was found that the injected fuel spray collided with the bottom of the bowl and moved upward along the exhaust side wall of the piston bowl. This fuel vapor played a important role in the instance of spark ignition. The injector specifications has a great influence on the flame characteristics.

  • PDF

Effects of the Method of Changing Compression Ratio on Engine Performance in an SI Engine (가솔린 엔진에서 압축비 변경 방법이 성능에 미치는 영향)

  • 이원근;엄인용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.27-33
    • /
    • 2001
  • In this study, it is observed that the distribution of combustion chamber volume affects the volumetric efficiency. The distribution ratio was adjusted by controlling combustion chamber volume of head and piston bowl one. Four cases were investigated, which are the combination of different distribution ratios and different compression ratios (9.8-10.0). A commercial SOHC 3-valve engine was modified by cutting the bottom face of the head and/or replacing the piston by the one that has different volume. The result shows that the less the head side volume, the more volumetric efficiency is achieved under the same compression ratio. It is also observed that increasing volumetric efficiency results in early knock occurrence due to increased "real" compression ratio. To consider reliability in estimating the volumetric efficiency, we examined the sensitivity of the AFR equation to possible errors in emission measurements. It is shown that the volumetric efficiency, which is calculated by measuring AFR and fuel consumption, can be controlled in 1% error. 1% error.

  • PDF