• Title/Summary/Keyword: Piping system

Search Result 777, Processing Time 0.036 seconds

A Case Study of Root Cause Analyses and Remedies for High frequency Vibration of Globe Valve in Nuclear Power Plant Piping System (원자력 발전소 배관계 글로브 밸브의 고주파 진동 원인 분석 및 해결 사례)

  • Choi, Byoung-Hwa;Park, Soo-Il;Cheon, Chang-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • A case history is presented pertaining to high frequency piping vibration and noise caused by globe valve in the spent fuel pool cooling system of nuclear power plant. Frequency analyses were performed on the system to diagnose the problem and develop a solution to reduce the piping vibration and noise. The source of the high frequency and noise energy was traced to the globe valve located immediately downstream of the centrifugal pump by performing valve throttling test. Measurements of vibration and noise are presented to show that the high frequency vibration and noise amplitude was dependent upon the valve disc position and flow rate. Strouhal vortex shedding frequencies were generated at the exit of the globe valve which exited structural resonance of valve disc and amplified the high frequency vibration and noise. The problem was identified as an interaction between the flow inside globe valve and the valve disc structure. Attempts to reduce the vibration and noise amplitudes of the piping system were successfully achieved by the modification of guide-disc diameter and disc-edge figure The valve disc was replaced by an alternative to eliminate the source of the harmful high frequency vibration and noise.

  • PDF

Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Anjusha, K.V.;Gandhi, P.;Singh, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1588-1596
    • /
    • 2022
  • In the nuclear power plants, stainless steel is widely used for fabrication of various components such as piping and pipe fittings. These piping components are subjected to cyclic loading due to start up and shut down of the nuclear power plants. The application of cyclic loading may lead to initiation of crack at stress raiser locations such as nozzle to piping connection, crown of piping bends etc. of the piping system. Crack initiation can also take place from the flaws which have gone unnoticed during manufacturing. Therefore, prediction of crack initiation life would help in decision making with respect to plant operational life. The primary objective of the present study is to compile various analytical models to predict the crack initiation life of the pipes with notch. Here notch simulates the stress raisers in the piping system. As a part of the study, Coffin-Manson equations have been benchmarked to predict the crack initiation life of pipe with notch. Analytical models proposed by Zheng et al. [1], Singh et al. [2], Yang Dong et al. [25], Masayuki et al. [33] and Liu et al. [3] were compiled to predict the crack initiation life of SA312 Type 304LN stainless steel pipe with notch under fatigue loading. Tensile and low cycle fatigue properties were evaluated for the same lot of SA312 Type 304LN stainless steel as that of pipe test. The predicted crack initiation lives by different models were compared with the experimental results of three pipes under different frequencies and loading conditions. It was observed that the predicted crack initiation life is in very good agreement with experimental results with maximum difference of ±10.0%.

Optimal Piping Network Design of Pneumatic Waste Collection System (생활폐기물 자동집하시설의 관로망 최적 설계)

  • Sung, Sun-Kyung;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.54-58
    • /
    • 2010
  • The pneumatic waste collection system, which is a complete solution for solving the waste collection problems, are constructed in many countries all over the world. However, research data for piping network design are insufficient. In this paper the pressure losses of the straight and curved pipes, pipe junctions are obtained using the numerical method in order to investigate the optimal pipe network design for the waste collection system. As an experimental result, the length of 1.8 meter is the reasonable for the radius of curvature of a curved pipe and the angle of 30 degree is suitable for confluent pipe.

Numerical Analysis of Thermal Stratification and Turbulence Penetration into Leaking Flow in a Circular Branch Piping (원형 T분기배관 내 누설유동의 열성층화와 난류침투에 관한 전산해석적 연구)

  • Han, Seong-Min;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1833-1838
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack(TFC) accident. In the present study, when the turbulence penetration occurs in the branch piping, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine

  • PDF

Vibration Reduction of Pump And Pipe System (대형펌프와 조합된 배관계 진동 저감)

  • Bae, Chun-Hee;Won, Jong-Bum;Cho, Cheul-Whan;Yang, Kyeong-Hyeon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.652-657
    • /
    • 2000
  • In this paper, Firstly, it is shown that the high vibration source of piping system is the pulsation transmission of pipe line element, such as, orifice plate, valves and the control valve is a broad band source and the branch wall and the cavity have vortex frequency. Secondly, in order to decrese the high vibration of piping system, some practical Friction damper with high damping have been developed and its effectiveness is investigated as installing it at piping system practically.

  • PDF

A Study on Engineering Design IT Installation of Thermal Relief Valve in a Chemical Plant (화학플랜트에서의 릴리프밸브 설계에 관한 고찰)

  • Char, Soon-Chul;Hwang, Soon-Yong;Jang, Seo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.4
    • /
    • pp.39-51
    • /
    • 2006
  • Based on the practical process engineering design and commissioning and startup operation experiences focused on chemical process safety, the comprehensive review of engineering design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is provided to enhance the better understanding of the piping system of characteristics of thermal relief valve which is comprised of the theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve engineering design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly suggested that following topic should be implemented during thermal relief valve engineering design, installation and normal operation as well.

Vibration Analysis for IHTS Piping System of LMR Conveying Hot Liquid Sodium (고온소듐 내부유동을 갖는 액체금속로 중간열전달계통 배관에 대한 진동특성 해석)

  • Koo, Gyeong-Hoi;Lee, Hyeong-Yeon;Lee, Jae-Han
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.386-391
    • /
    • 2001
  • In this paper, the vibration characteristics of IHTS(Intermediate Heat Transfer System) piping system of LMR(Liquid Metal Reactor) conveying hot liquid sodium are investigated to eliminate the pipe supports for economic reasons. To do this, a 3-dimensional straight pipe element and a curved pipe element conveying fluid are formulated using the dynamic stiffness method of the wave approach and coded to be applied to any complex piping system. Using this method, the dynamic characteristics including the natural frequency, the frequency response functions, and the dynamic instability due to the pipe internal flow velocity are analyzed. As one of the design parameters, the vibration energy flow is also analyzed to investigate the disturbance transmission paths for the resonant excitation and the non-resonant excitations.

  • PDF

Optimal Piping Network Design of Pneumatic Waste Collection System (생활폐기물 자동집하시설의 관로망 최적설계)

  • Park, Jun-Gil;Suh, Sang-Ho;Cho, Min-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2794-2797
    • /
    • 2008
  • The pneumatic waste collection system, which is a complete solution for solving the waste collection problems, are constructed in many countries all over the world. However, research data for piping network design are insufficient. In this paper the pressure losses of the straight and curved pipes, pipe junctions are obtained using the numerical method in order to investigate the optimal pipe network design for the waste collection system.

  • PDF

A research on Dynamic characteristic of Submerged pipe ; Support, Flange, Upper pump (수위변화에 따른 파이프 시스템의 진동 특성 변화에 대한 연구)

  • Jung, Hwee Kwon;Kim, Jong Yoon;Park, Gyuhae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.699-705
    • /
    • 2013
  • This paper presents vibration testing, control, and finite element analysis of a piping system, which is subjected to the changes in fluid levels. Nuclear power plants typically employ a cooling system that uses sea water. These systems are subjected to dynamic characteristic changes caused by sea-level variations, which introduces failures of cooling system components. Therefore in this study, analytical and experimental studies were performed to understand the effect of sea-level changes on the dynamic characteristics of piping systems. It was shown that, as the sea-level increases, pipe's natural frequencies decreases in relation to its mode shape. A 1/14 scale model was also built to compare the results obtained by the analytical study. A good agreement between experiment and analytical studies were observed. Finally, an on-line resonant frequency identification system was proposed and developed, which utilizes piezoelectric transducers as sensors and actuators, in order to avoid catastrophic failure of piping systems.

  • PDF

Design Consideration about Large Caliber Piping of Polyethylene Material (폴리에틸렌 소재의 대구경 배관 설계 고찰)

  • Kim, Eung-Soo;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • As the polyethylene of high strength and ductility stabilized chemically has been mass-produced, it is spreading widely as material of industrial piping and water service piping. Recently, High density polyethylene (HDPE) pipe has been used even in water supply system of plant as buried pipe instead of cast iron pipe in domestic, but HDPE pipe has a probability of occurrence of damage if plant design and operating conditions are not considered. As a result of reviewing with respect of system design engineering based on operating conditions and verification test results, the specific design criteria for the use of HDPE piping in fire water supply system need to be established because of the possibility of crack damage due to water hammer.