• Title/Summary/Keyword: Piping system

Search Result 776, Processing Time 0.024 seconds

Seismic Performance Evaluation of Multi-Story Piping Systems using Triple Friction Pendulum Bearing (지진격리장치를 적용한 복층구조파이핑 시스템의 내진성능평가)

  • Ryu, Yonghee;Ju, Buseog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.450-457
    • /
    • 2018
  • Purpose: The evaluation of seismic performance of critical structures has been emerging a key issue in Korea, since a magnitude 5.8 earthquake, the worst in Koran history, struck Gyeongju, southern area in Korea on september 12th, 2016. In particular, the catastrophic failure of nonstructural components such as sprinkler piping systems can cause significant economic loss or loss of life during and after an earthquake. The nonstructural components can be more fragile than structural components in seismic behavior. Method: This study presents the seismic performance evaluation of fire protection piping system, using coupled building-piping system installed with Triple Friction Pendulum Bearings (TPBs). Kobe (Japan), Kocaeli (Turkey), and GyeongJu (Korea) were selected to consider the uncertainty of ground motions in this study. Result: In the simulation results, it was observed that the reduction of maximum displacements of the piping system with the TPBs' system was significant: Kobe, Kocaeli, and Gyeongju cases were 49%, 14.4% and 21.5%, respectively. Conclusion: Therefore, using seismically isolated system in a building-piping system can be more effective to reduce the seismic risk than a normally installed building-piping systems without TPBs in strong earthquakes.

Mechanism Diagnosis and Avoidance Design on Transient Acoustic Vibration of Reheater Water Supply Piping in Supercritical Boiler (초임계 보일러 재열기 급수 공급배관의 과도 음향진동 진단 및 회피설계)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Kim, Jae-Won;Lee, Doo-Young;Heo, Hae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.385-393
    • /
    • 2013
  • In this paper, the mechanism identification and the avoidance measures on the phenomena of transient acoustic vibration amplified at the water-supply piping system to regulate the steam temperature of the boiler reheater in 500MW class supercritical power plant are presented. The pressure pulsation waves induced by the impeller passing of two feed-water pumps with five blades are coincident with the local acoustic modes of boiler reheater water-supply piping system. There are the phenomena amplified at the peaks of 5X, 10X, 15X and 20X in spectrums of piping vibration, sound pressure, and the feed-water's pressure pulsation waves. The shut-off device is installed in the piping system for the interception of pressure pulsation waves transmitted from two feed-water pumps and the modified design change of the piping layout is applied for the acoustic resonance avoidance. The acoustic natural frequencies are separated from the harmonics of pressure pulsation waves induced by the pump impellers passing through the design change of the span length. The acoustic vibration is gone by resonance avoidance measures. As a result, more than 20 dBA reduction is achieved from 100 dBA to 80 dBA.

Study on Optimal Welding Processes of Half Nozzle Repair on Small Bore Piping Welds in Reactor Coolant System (원자로냉각재계통 소구경 관통관 용접부 부분노즐교체 예방정비를 위한 최적 용접공정에 관한 연구)

  • Kim, Young Zoo;Jung, Kwang Woon;Choi, Kwang Min;Choi, Dong Chul;Cho, Sang Beum;Cho, Hong Seok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2018
  • The purpose of this study is to develop a Half Nozzle Repair(HNR) process to prevent the leakage from welds on small bore piping in Reactor Coolant System. The Codes & Standards of tempered bead and design requirements of J-Groove welds are reviewed. Automatic machine GTAW welding and machining equipments are developed to perform HNR process. Single pass welding and overlay welding equipments are conducted in order to obtain the optimal temper bead welding process parameters with Alloy 52M filler wire. Coarse grain heat affected zone(CGHAZ) is formed by rapid cooling rate in heat affected zone after welding. Accordingly, a proper temper bead technique is required to reduce CGHAZ in 1-Layer of welds by 2- and 3-Layers. Mock-up tests show that the developed HNR process is possible to meet ASME Code & Standard requirements without any defect.

Experimental Capacity of Suspended Piping Trapeze Restraint Installations under Cyclic Loadings (반복하중을 받는 경량 배관 서포트 시스템에 대한 실험적 성능 평가)

  • Jeong, Sang-Deock;Oh, Chang-Soo;Park, Min Jae;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.79-86
    • /
    • 2023
  • Damage to gas and fire protection piping systems can lead to secondary disasters after an earthquake, so their seismic design is crucial. Accordingly, various types of seismic restraint installations are being devised, and a new suspended piping trapeze restraint installation has also recently been developed in Korea. In this study, a cyclic loading test was performed on the developed trapeze support system, and its performance was evaluated according to ASHRAE 171, the standard for seismic and wind restraint design established by the American Society of Refrigeration and Air Conditioning Engineers (ASHRAE). The three support system specimens did not break or fracture, causing only insignificant deformations until the end of the experiment. Based on the experimentally rated strength and displacement performance, this trapeze support system is expected to control the seismic movement of piping during an earthquake.

Shaking table test and numerical analysis of nuclear piping under low- and high-frequency earthquake motions

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi;Chang, Sungjin;Jeon, Bubgyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3361-3379
    • /
    • 2022
  • A nuclear power plant (NPP) piping is designed against low-frequency earthquakes. However, earthquakes that can occur at NPP sites in the eastern part of the United States, northern Europe, and Korea are high-frequency earthquakes. Therefore, this study conducts bi-directional shaking table tests on actual-scale NPP piping and studies the response characteristics of low- and high-frequency earthquake motions. Such response characteristics are analyzed by comparing several responses that occur in the piping. Also, based on the test results, a piping numerical analysis model is developed and validated. The piping seismic performance under high-frequency earthquakes is derived. Consequently, the high-frequency excitation caused a large amplification in the measured peak acceleration responses compared to the low-frequency excitation. Conversely, concerning relative displacements, strains, and normal stresses, low-frequency excitation responses were larger than high-frequency excitation responses. Main peak relative displacements and peak normal stresses were 60%-69% and 24%-49% smaller in the high-frequency earthquake response than the low-frequency earthquake response. This phenomenon was noticeable when the earthquake motion intensity was large. The piping numerical model simulated the main natural frequencies and relative displacement responses well. Finally, for the stress limit state, the seismic performance for high-frequency earthquakes was about 2.7 times greater than for low-frequency earthquakes.

Study on Support Span Optimization of Pipeline System Considering Seismic Load (지진 하중을 고려한 배관시스템의 지지 스팬 최적화에 관한 연구)

  • Hur, Kwan-Do;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.627-635
    • /
    • 2020
  • In this study, the optimal support span determination of pipeline system was carried out in consideration of the effects of seismic loads. The theoretical support and structural analysis were used to determine the optimal support span of piping system according to pipe diameter using theoretical and structural deflection criteria. The reliability of the analysis results was secured by comparing the structural and theoretical results. In particular, the optimum support span of piping system was obtained by considering the effects of seismic load, and the optimal support span of pipe diameter and piping system tended to be proportional to each other. When considering the effects of earthquakes on different pipe diameters(300~2,500mm), the span length is reduced by up to 48% at the allowable stress criterion, and the pipe span length is reduced by up to 5.9% at the deflection criterion. It can be seen that the effect of the seismic load on the determination of the piping span length has a greater effect on the stress than the displacement.

Pressure Characteristics According to the Duct Shapes of Turbo Blowers Connected in Serial (다단 블로어 덕트형상에 따른 압력특성 연구)

  • Park, Young-Bin;Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.30-35
    • /
    • 2010
  • Pressure characteristics according to the duct shapes of turbo blowers connected in serial have been performed to reduce pressure loss in the piping system. To analyze three-dimensional flow field in the turbo blower system, general analysis code, CFX, is introduced in the present work. SST turbulence model is applied to estimate the eddy viscosity. Throughout the numerical simulation for the turbo blower system having a various shape of a inlet guide, optimal inlet guide can be selected. It is found that the pressure loss in the piping system having the optimal inlet guide can be reduced by minimizing the inflow distortion at the upstream of the impeller. Detailed flow analysis of the blower system serially connected is also performed and analyzed.

Improvement of the Code Classification Structure in Piping Material Management for Petrochemical Plant Projects (석유화학 플랜트의 효율적 배관자재 관리를 위한 코드분류체계 개선)

  • Lee, Jong-Pill;Moon, Yoon-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.11 no.1
    • /
    • pp.39-49
    • /
    • 2015
  • The objective of this study is to improve the classification structure of commodity code for piping material management which is considered as the fundamental of commodity code and piping material management system. It enhances the efficiency of piping material management directly or indirectly affecting the engineering, procurement and construction in a petrochemical plant projects. To establish an improved code classification structure, this study identifies the problems of former code classification structure in details, as well as the characteristics of other domestic and global EPC company's code classification structures and presents the improved direction considering the recently mega-sized and specialized projects. Accordingly, to efficiently enhance piping material management, the improved code classification structures have been derived from defining suitable code classification structure for specific piping component, adding more standard attribute, expanding the number of code digits and classifying code hierarchy. The results of applying the improved classification structure of commodity code to on-going project have led to reduce the rate of rework from 4.98% to 2.48% for developing purchase description and also have saved working time for executing piping design by 3D modeling from 6 months by two persons to 4 months by a person which is decreased 67% consequently. In addition, the structures of pyramid code management have resulted to accumulation and analysis of the various piping data for other disciplines such as procurement and estimation team which require commodity code information through the company's material control system.

  • PDF

Design and Integrity Evaluation of High-temperature Piping Systems in the STELLA-2 Sodium Test Facility (STELLA-2 소듐 시험 시설 고온 배관 계통의 설계 및 건전성 평가)

  • Son, Seok-Kwon;Lee, Hyeong-Yeon;Ju, Yong-Sun;Eoh, JaeHyuk;Kim, Jong-Bum;Jeong, Ji-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.775-782
    • /
    • 2016
  • In this study, elevated temperature design and integrity evaluation have been conducted using two different piping design codes for the high-temperature piping systems of sodium integral effect test loop for safety simulation and assessment(STELLA-2) being developed by KAERI(Korea Atomic Energy Research Institute). The design code of ASME B31.1 for power piping and French nuclear grade piping design guideline, RCC-MRx RD-3600 were applied, and conservatism of those codes was quantified based on the piping integrity evaluation results. The piping system of Model DHRS, Model IHTS and PSLS are to be installed in STELLA-2. The integrity evaluation results for the three piping systems according to the two design codes showed that integrity of the piping system was confirmed. As a code comparison result, ASME B31.1 was shown to be more conservative for sustained loads while RD-3600 was more conservative for thermal loads compared to B31.1.

Shape Optimization of an Air Conditioner Piping System (에어컨 배관 시스템의 형상 최적설계)

  • Min, Jun-Hong;Choi, Dong-Hoon;Jung, Du-Han
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1151-1157
    • /
    • 2009
  • Ensuring both product quality and reducing material cost are important issue for the design of the piping system of an air conditioner outdoor unit. This paper describes a shape optimization that achieves mass reduction of an air conditioner piping system while satisfying two design constraints on resonance avoidance and the maximum stress in the pipes. In order to obtain optimized design results with various analysis fields considered simultaneously, an automated multidisciplinary analysis system was constructed using PIAnO v.2.4, a commercial process integration and design optimization(PIDO) tool. As the first step of the automated analysis system, a finite element model is automatically generated corresponding to the specified shape of the pipes using a morphing technique included in HyperMesh. Then, the performance indices representing various design requirements (e.g. natural frequency, maximum stress and pipe mass) are obtained from the finite element analyses using appropriate computer-aided engineering(CAE) tools. A sequential approximate optimization(SAO) method was employed to effectively obtain the optimum design. As a result, the pipe mass was reduced by 18 % compared with that of an initial design while all the constraints were satisfied.