• Title/Summary/Keyword: Piping support

Search Result 78, Processing Time 0.024 seconds

Ultrasonic Image of the Side Drilled Holes in SS Reference Block as Combining Bases of Support for Spatial Frequency Response

  • Koo, Kil-Mo;Song, Chul-Hwa;Beak, Won-Pil;Kang, Hee-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. There is a kind of specimen, one is a reference block having 1/4T, 1/2T, 3/4T side drilled holes as main run piping material of the steam generator in nuclear power plants. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously. Further more we have studied the reconstruction method of the amplitude and phase images, the enhancement method of the defect images' contrast.

  • PDF

Experiments on the Thermal Stratification in the Branch of NPP

  • Kim Sang Nyung;Hwang Seon Hong;Yoon Ki Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1206-1215
    • /
    • 2005
  • The thermal stratification phenomena, frequently occurring in the component of nuclear power plant system such as pressurizer surge line, steam generator inlet nozzle, safety injection system (SIS), and chemical and volume control system (CVCS), can cause through-wall cracks, thermal fatigue, unexpected piping displacement and dislocation, and pipe support damage. The phenomenon is one of the unaccounted load in the design stage. However, the load have been found to be serious as nuclear power plant operation experience accumulates. In particular, the thermal stratification by the turbulent penetration or valve leak in the SIS and SCS pipe line can lead these safety systems to failure by the thermal fatigue. Therefore in this study an 1/10 scaledowned experimental rig had been designed and installed. And a series of experimental works had been executed to measure the temperature distribution (thermal stratification) in these systems by the turbulent penetration, valve leak, and heat transfer through valve. The results provide very valuable informations such as turbulent penetration depth, the possibility of thermal stratification by the heat transfer through valve, etc. Also the results are expected to be useful to understand the thermal stratification in these systems, establish the thermal strati­fication criteria and validate the calculation results by CFD Codes such as Fluent, Phenix, CFX.

Vibration control for serviceability enhancement of offshore platforms against environmental loadings

  • Lin, Chih-Shiuan;Liu, Feifei;Zhang, Jigang;Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.403-414
    • /
    • 2019
  • Offshore drilling has become a key process for obtaining oil. Offshore platforms have many applications, including oil exploration and production, navigation, ship loading and unloading, and bridge and causeway support. However, vibration problems caused by severe environmental loads, such as ice, wave, wind, and seismic loads, threaten the functionality of platform facilities and the comfort of workers. These concerns may result in piping failures, unsatisfactory equipment reliability, and safety concerns. Therefore, the vibration control of offshore platforms is essential for assuring structural safety, equipment functionality, and human comfort. In this study, an optimal multiple tuned mass damper (MTMD) system was proposed to mitigate the excessive vibration of a three-dimensional offshore platform under ice and earthquake loadings. The MTMD system was designed to control the first few dominant coupled modes. The optimal placement and system parameters of the MTMD are determined based on controlled modal properties. Numerical simulation results show that the proposed MTMD system can effectively reduce the displacement and acceleration responses of the offshore platform, thus improving safety and serviceability. Moreover, this study proposes an optimal design procedure for the MTMD system to determine the optimal location, moving direction, and system parameters of each unit of the tuned mass damper.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.

Implementation Status of Performance Demonstration Program for Steam Generator Tubing Analysts in Korea

  • Cho, Chan-Hee;Lee, Hee-Jong;Yoo, Hyun-Ju;Nam, Min-Woo;Hong, Sung-Yull
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • Some essential components in nuclear power plants are periodically inspected using non-destructive examinations, for example ultrasonic, eddy current and radiographic examinations, in order to determine their integrity. These components include nuclear power plant items such as vessels, containments, piping systems, pumps, valves, tubes and core support structure. Steam generator tubes have an important safety role because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. There is potential that if a tube bursts while a plant is operating, radioactivity from the primary coolant system could escape directly to the atmosphere. Therefore, in-service inspections are critical in maintaining steam generator tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due to its high inspection speed and flaw detectability on non-magnetic tubes. However, it is not easy to analyze correctly eddy current signals because they are influenced by many factors. Therefore, the performance of eddy current data analysts for steam generator tubing should be demonstrated comprehensively. In Korea, the performance of steam generator tubing analysts has been demonstrated using the Qualified Data Analyst program. This paper describes the performance demonstration program for steam generator tubing analysts and its implementation results in Korea. The pass rate of domestic analysts for this program was 71.4%.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Generation of Floor Response Spectra including Equipment-Structure Interaction in Frequency Domain (진동수 영역에서 기기-구조물 상호작용을 고려한 층응답스펙트럼의 작성)

  • Choi, Dong-Ho;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.13-19
    • /
    • 2005
  • Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plants are usually generated without considering dynamic interaction between main structure and subsystem. This study describes the analytic method in which equipment response spectra can be obtained through dynamic analysis considering equipment-structure Interaction(ESI). In this method, dynamic response of the equipment by this method is based on a dynamic substructure method in which the equipment-structure system is partitioned into the single-degree-ol-freedom system(SDOF) representing the equipment and the equipment support impedance representing the dynamic charactenstics of the structure ai the equipment support. A family of equipment response spectra is developed by applying this method to calculate the maximum responses of a family of SDOF equipment systems with wide banded equipment frequency, damping ratio, and mass. The method is validated by comparing the floor response spectrum from this method with the floor response spectrum generated from the rigorous analysis including equipments on the containment building of a prototypical nuclear power plant. in order to Investigate ESI effect in the response of equipment, response values from the method and the conventional approach without considering ESI are compared for the equipment having the mass less than 1% of the total structural mass. Response spectra from the method showed lower spectral amplitudes than those of the conventional floor response spectra around controlling frequencies.