• Title/Summary/Keyword: Pipelines

Search Result 828, Processing Time 0.026 seconds

Development of a Simulator for the Intermediate Storage Hub Selection Modeling and Visualization of Carbon Dioxide Transport Using a Pipeline (파이프라인을 이용한 이산화탄소 수송에서 중간 저장 허브 선정 모델링 및 시각화를 위한 시뮬레이터 개발)

  • Lee, Ji-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.12
    • /
    • pp.373-382
    • /
    • 2016
  • Carbon dioxide Capture and Storage/Sequestration (CCS) technology has attracted attention as an ideal method for most carbon dioxide reduction needs. When the collected carbon dioxide is transported to storage via pipelines, the direct transport is made if the storage is close, otherwise it can also be transported via an intermediate storage hub. Determining the number and the location of the intermediate storage hubs is an important problem. A decision-making algorithm using a mathematical model for solving the problem requires considerably more variables and constraints to describe the multi-objective decision, but the computational complexity of the problem increases and it also does not guarantee the optimality. This research proposes an algorithm to determine the location and the number of the intermediate storage hub and develop a simulator for the connection network of the carbon dioxide emission site. The simulator also provides the course of transportation of the carbon dioxide. As a case study, this model is applied to Korea.

Seismic Performance of a Knee-Braced Moment Resisting Frame (Knee brace가 설치된 모멘트저항골조의 내진성능)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2005
  • In this study the seismic performance of a three-story knee-braced moment-resisting frame (KBMRF), which is typically employed to support pipelines for oil or gas, was investigated. Nonlinear static pushover analyses were performed first to observe the force-displacement relationship of KBMRF under increasing seismic load. The results show that, when the maximum inter-story drift reached 1.5% of the story height, the main structural members, such as beams and columns, still remained elastic. Then nonlinear dynamic time-history analyses were carried out using eight earthquake ground motion time-histories scaled to at the design spectrum of UBC-97. It turned out that the maximum inter-story drift was smaller than the drift limit of 1.5 % of the structure height, and that the columns remained elastic. Based on these analytical results, it can be concluded that the seismic performance of the structure satisfies all the requirements regulated in the seismic code.

Leak and Leak Point Prediction by Detecting Negative Pressure Wave in High Pressure Piping System (저압확장파 검출을 통한 배관 누출 및 누출위치 예측)

  • Ha, Tae-Woong;Ha, Jong-Man;Kim, Dong-Hyuk;Kim, Young-Nam
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.47-53
    • /
    • 2007
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods, which have been recently suggested on pipeline network. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using CFD++, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave and verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. For the application of long pipe line system. The method of 1-dimensional analysis has been suggested and verified with results of CFD++.

  • PDF

An Experimental Study on the Mechanical Impact (Third Party Damage) of High Pressure Gas Pipe (고압가스배관의 기계적 충격(타공사)에 대한 실험적 연구)

  • Lee, Kyung-eun;Kim, Jeong Hwan;Ha, Yu-jin;Kil, Seong-he
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2017
  • One of the main causes of gas pipeline accidents is mechanical impact(third party damage). The majority of high pressure gas pipelines buried in major domestic industrial complexes are old pipes which have being operated over 20 years. Therefore, if an accident occurs, there will be a full scale accident because there is no additional inspection and reinforcement time. In this study, the defects on the piping during the mechanical impact were studied through the third party damage(excavation) experiments. Experiments were carried out using the 21 ton excavator which is operated in the actual excavation work and the type of pipe to be struck are ASTM A106 Grade.B and ASTM A53 Grade.B. As a result, when the bucket used during excavator operation is a sawtooth bucket, the defect is more bigger. And the smaller the diameter of the pipe, the smaller the depth and length of the defect. Also, it was confirmed that the impact height had no effect on the defects on the buried pipe, during the excavation work.

Hydraulic Analysis of Urban Water-Supply Networks in Marivan

  • Tavosi, Mohammad Ghareb;Siosemarde, Maaroof
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.396-402
    • /
    • 2016
  • In this study, hydraulic analysis of water-supply networks in Marivan was performed by modeling. WATERGEMS was used for modeling and it was calibrated using existing rules and regulations. The purpose of this research is modeling urban water network and its analysis based on hydraulic criteria and meeting pressure conditions at the nodes and complying the economic speed. To achieve this goal, first the pipelines of city streets was designed in AutoCAD on a map of the city. It should be mentioned that it was tried to prevent from creating additional loops in the network and the optimal network was designed by a combination of annular and branch loops. In the next step, the pipes were called in WATERGEMS and then we continue the operation by the allocation of elevation digits to the pipes. Since the topography of this city is very specific and unique, the number of pressure zones was increased. Three zones created only covers about 20% of the population in the city. In this dissertation, the design was performed on the city's main zone with the largest density in the Figures 1,320-1,340. In the next step, the network triangulation was conducted. Finally, the Debiw as allocated based on the triangulation conducted and considering the density of the city for year of horizon. Ultimately, the network of Marivan was designed and calibrated according to hydraulic criteria and pressure zoning. The output of this model can be used in water-supply projects, improvement and reform of the existing net-work in the city, and various other studies. Numerous and various graphs obtained in different parts of a network modelled can be used in the analysis of critical situation, leakage.

Earthquake Response Analysis of a Buried Gas Pipeline (매설가스배관의 지진응답해석)

  • Lee, Do-Hyung;Cho, Kyu-Sang;Chung, Tae-Young;Kong, Jung-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.41-52
    • /
    • 2007
  • Earthquake time-history analyses have been carried out for a buried gas pipeline of X65 which is of popular use in Korea. Parameters included are shape of a buried gas pipeline, soil characteristics, single and multiple earthquake input ground motions and burial depths. Predicted response of strain and relative displacement are then compared with allowable strain and displacement capacity calculated by Guidelines for the Seismic Design of Buried Gas Pipelines, KOGAS. Comparative studies show that strains are in general affected by the burial depths together with change of soil conditions. Regarding the relative displacement, while axial relative displacement is not influenced by the burial depths, transverse relative displacement is affected by both burial depths as well as soil conditions. In all, the current study is encouraged to give a useful information for healthy earthquake evaluation of a buried pipeline.

Development of construction method for underground buildings with MSRC diaphram wall and study on flexural performance of MSRC diaphram wall (강재주열벽을 적용한 지하건축물 가설공법의 개발 및 강재주열벽의 휨성능 연구)

  • Chung, Jee-Seung;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.937-957
    • /
    • 2017
  • Urban roads are not only congested with vehicles and pedestrians, but also have many pipelines buried to provide convenience for inhabitants. In addition, urban inhabitants live comfortably in buildings adjacent to the road for residence, business, commerce, rest and so on. Therefore, despite the high cost of land, urban underground buildings with high land use efficiency are constantly being built. Recently, the construction of underground buildings has caused social problems such as the collapse of surrounding roads and adjacent buildings. Institutional improvement is being actively carried out to improve this. In this study, a new type of MSRC diaphragm wall was developed and a study on the construction method of underground building was carried out. It is intended to secure the underground excavation safety of underground buildings in urban areas and effectively prevent land subsidence complaints. Also, a reasonable design method of MSRC diaphragm walls using the ultimate strength design method is presented through the flexural performance Experiment.

A Study of Life Characteristic of Hydraulic Hose Assembly by Adopting Complex Accelerated Model with Acceleration Factors of Pressure and Temperature (압력과 온도 복합가속모형을 적용한 유압호스 조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1697-1703
    • /
    • 2010
  • Hydraulic hoses are used as pipelines for transferring power from hydraulic systems in various machineries such as construction equipments, automobiles, and aircraft. Hydraulic hoses protect the system from vibration or impacts, and they are being used to transfer energy in all segments of the industry. In order to protect the system from various external environmental conditions, hydraulic hose assemblies must be able to withstand a wide range of temperatures and pressures, as well as variations in other factors. In previous studies, an acceleration model for the hydraulic hose assembly was developed by taking into account only one of the acceleration factors (temperature or pressure). Therefore, the objective of this study is to develop a comprehensive acceleration model that takes both temperature and pressure into consideration.

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

Prediction of Transport Properties for Transportation of Captured CO2. 1. Viscosity (수송조건 내 포집 이산화탄소의 전달물성 예측. 1.점성)

  • Lee, Won Jun;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.4
    • /
    • pp.195-201
    • /
    • 2017
  • In this study, the viscosity of a $CO_2-gas$ mixture was investigated for the transportation of the captured $CO_2-gas$ in pipelines and for the designing of a thermal system, both of which involve the utilization of the $CO_2-gas$ mixture. The viscosities of the $CO_2-gas$ mixture, $CO_2+CH_4$, $CO_2+H_2S$, and $CO_2+N_2$ were predicted using three different models as follows : Chung, TRAPP, and REFPROP. The predictability values of the models were validated by comparing the estimated results with the experiment data for the $CO_2+CH_4$ and $CO_2+N_2$ under high-density conditions. The Chung model showed 2.41%, which is the lowest mean deviation of the prediction among the model. Based on the Chung model, the mixture mole fractions were changed from 0.9, 0.95, and 0.97, the mixture pressure was ranged from 80 bar to 120 bar by 10 bar, and the mixture temperature was varied from 310 K to 400 K by 10 K to observe the effects of the parameters on the mixture viscosity. Considering the high mole fraction of the $CO_2$ in the mixture, a significant variation of the mixture viscosity was observed close to the pseudo-critical temperature, and the viscosity for the $CO_2+H_2S$ mixture shows the highest values compared with those of the $CO_2+CH_4$ and $CO_2+N_2$.