• Title/Summary/Keyword: Pipeline Inspection

Search Result 125, Processing Time 0.027 seconds

Supplementation of Regulation on the Offshore Oil Pipeline for Maintenance (해저 송유배관 유지관리를 위한 기준 보완 제시)

  • Kang, Chan-Seong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.2
    • /
    • pp.70-81
    • /
    • 2012
  • The study aims to supplement facility management plan and safety regulations & standard of oil pipeline by searching and reviewing related regulation & standard inside and outside of the country. Korean regulation & standard is reviewed based on harbor and fishery design standard of the ministry of maritime affairs and fisheries, general technology standard of oil pipeline safety regulation, gas excavation construction and safety maintenance indicator of Korea gas corporation. Global regulation & standard is reviewed based on U.S standard inspection for offshore pipeline and Europe/Mexico standard inspection for offshore pipeline. The contents of offshore pipeline installation is inserted into pipeline sector for objected facilities of safety inspection regulation & standard and, the standard of safety inspection for offshore pipeline is newly presented into pipeline maintenance part of the planning facilities management with its inspection period and method.

  • PDF

Development of the Hydraulic Inspection Method for Irrigation Pipeline Systems (관수로 시스템 수리진단 기법 개발)

  • Kim, Young-Hwa;Park, Ji-Sung;Cheong, Byong-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.251-254
    • /
    • 2003
  • For improving the flow capacity of pipeline system the hydraulic inspection method was developed conducting on-site with survey of pipeline facility such as diversion work, air vent, etc. and pipe network analysis. The pipe network analysis method determine pipe diameter with trial and error. The validity of the hydraulic inspection method proved adapting on S-district pipeline system.

  • PDF

A study on the auto encoder-based anomaly detection technique for pipeline inspection (관로 조사를 위한 오토 인코더 기반 이상 탐지기법에 관한 연구)

  • Gwantae Kim;Junewon Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.2
    • /
    • pp.83-93
    • /
    • 2024
  • In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.

Design and Implementation of 30" Geometry PIG

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.629-636
    • /
    • 2003
  • This paper introduces the developed geometry PIG (Pipeline Inspection Gauge), one of several ILI (In-Line Inspection) tools, which provide a full picture of the pipeline from only single pass, and has compact size of the electronic device with not only low power consumption but also rapid response of sensors such as calipers, IMU and odometer. This tool is equipped with the several sensor systems. Caliper sensors measure the pipeline internal diameter, ovality and dent size and shape with high accuracy. The IMU (Inertial Measurement Unit) measures the precise trajectory of the PIG during its traverse of the pipeline. The IMU also provide three-dimensional coordination in space from measurement of inertial acceleration and angular rate. Three odometers mounted on the PIG body provide the distance moved along the line and instantaneous velocity during the PIG run. The datum measured by the sensor systems are stored in on-board solid state memory and magnetic tape devices. There is an electromagnetic transmitter at the back end of the tool, the transmitter enables the inspection operators to keep tracking the tool while it travels through the pipeline. An experiment was fulfilled in pull-rig facility and was adopted from Incheon LT (LNG Terminal) to Namdong GS (Governor Station) line, 13 km length.

Development of Inspection Gauge System for Gas Pipeline

  • Han, Hyung-Seok;Yu, Jae-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.370-378
    • /
    • 2004
  • An autonomous pipeline inspection gauge system has been developed for determining position, orientation, curvature, and deformations such as dents and wrinkles of operating pipelines by Korea Gas Company and Seoul National University. The most important part of several subsystems is the Strapdown Inertial Measurement Unit (SIMU), which is integrated with velocity and distance sensors, weld detection system, and digital recording device. The Geometry Pipeline Inspection Gauge (GeoPIG) is designed to operate continuously and autonomously for a week or longer in operating gas pipelines. In this paper, the design concepts, system integration, and data processing/analysis method for the PIG will be presented. Results from the recent experiment for a 58 kilometer gas pipeline will be discussed.

Effects of Residual Magnetization on MEL Non-destructive Inspection of Gas Pipeline (가스관의 자속누설탐사에서 잔류자화의 영향에 관한 연구)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.143-148
    • /
    • 2004
  • Effects of residual flux density M$_{res}$ and number of inspection on the detection voltage and flux density B of the gas pipeline were investigated in MFL inspection, which is widely used for the non-destructive inspection in a gas pipeline. A simulation equipment composed of the magnetizer and iron ring attached on an aluminum disc was constructed instead of a huge gas pipeline facility. With this system. the iron ring could be perfectly demagnetized and signals from the bolt screw stuck on the disc could be clearly detected so that the effects of M$_{res}$S and the inspection number on the detection voltage and B of iron ring were effectively investigated. With increasing the number of inspection, M$_{res}$, B of the iron ring and the detection voltage decreased and then kept at constant values while final M$_{res}$ increased with increasing initial M$_{res}$. If inspection condition were kept unchanged, the detection voltage was proportional to the last M$_{res}$ of the iron ring instead of B. This was probably due to magnetic hysteresis of the iron ring inherited from magnetic domain so that consideration on the magnetic hysteresis was inevitable in the analysis of MFL signal from defects of a gas pipeline. A new inspection scheme using the magnetizer with reversed magnetization in the subsequent inspection was proposed from the result that a high detection voltage could be obtained in the first inspection of gas pipeline with positive M$_{res}$.

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

Virtual reality application on MFL gas pipeline inspection system

  • Kim, Jae-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.47-52
    • /
    • 2010
  • This paper describes a visualization technique that animates geometrical defect data that are extracted using a magnetic flux leakage (MFL) operating system on nondestructive evaluation (NDE). Since data are collected from different locations and often not regular, the data must be converted to the standard format that is used within the pipeline in visualization procedures. In order to navigate inside of the pipeline, 3D virtual objects are generated and are able to explore the pipeline continuously. The major objectives of this paper are to characterize, generate general shape of defects, and enable computer interaction in virtual environment. Pipeline navigation system (PNS) has introduced the framework for interactive visual applications based upon the principles of modeling 3D objects. PNS presents some preliminary efforts to enable the user to interact human and computer with each other.

Development of a Geometry PIG for the Inspection of Natural Gas Pipeline and It´s application

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Park, Dae-Jin;Koo, Sung-Ja;Yoo, Hui-Ryong;Park, Yong-Woo;Kho, Young-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.150.4-150
    • /
    • 2001
  • The geometry PIG provides pipeline operators with continuous measurement of pipe centerline coordinates, bend radius, displacement, and bending strain in a single pass through the pipeline. This study introduces the developed geometry PIG(Pipeline Inspection Gauge) which is used for geometry surveys. This tool is equipped with the several sensor systems. The Inertial Navigation System (INS) comprises angle rate gyros and linear accelerometers. The system measures the precise path of the PIG during its traverse of the pipeline. This system is also used to produce a detailed map of the lire, measure curvature. Odometers measure the PIG´s distance moved along the line and instantaneous speed during the PIG run. Caliper sensors measure pipeline ...

  • PDF

Locating Mechanical Damages Using Magnetic Flux Leakage Inspection in Gas Pipeline System

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.521-526
    • /
    • 2010
  • Gas transmission pipelines are often inspected and monitored using the magnetic flux leakage method. An inspection vehicle known as a "pig" is launched into the pipeline and conveyed along the pipe by the pressure of natural gas. The pig contains a magnetizer, an array of sensors and a microprocessor-based data acquisition system for logging data. This paper describes magnetic flux leakage (MFL) signal processing used for detecting mechanical damages during an in-line inspection. The overall approach employs noise removal and clustering technique. The proposed method is computationally efficient and can easily be implemented. Results are presented and verified by field tests from an application of the signal processing.