• Title/Summary/Keyword: Pipe-in-pipe

Search Result 5,776, Processing Time 0.034 seconds

Evaluation of HIC Resistance for Thick-wall Welded Pipe (후육 용접 강관의 HIC 저항성 평가)

  • Seo Jun Seok;Kim Hee Jin;Ryoo Hoi-Soo
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.34-39
    • /
    • 2005
  • It is required for the steel materials used in the sour environment to have sufficient resistance to hydrogen induced cracking(HIC). For line pipe steels, HIC resistance could be varied during pipe making process due to the large plastic deformation applied in the thick-wall pipe. In order to figure out such effect, HIC tests were performed not only in the plate condition but in the pipe condition and their results were compared in terms of cracking ratio. Test results demonstrated a detrimental effect of plastic deformation to HIC resulting in a substantial increase in the cracking ratio after pipe forming process. All of the cracks found in the pipe material were located in the outer layer of pipe where the tensile strain was resulted during pipe forming stage. In order to understand the HIC resistance of the pipe but in the plate condition, it was suggested to pre-strain the plate to some extent before the HIC test.

Combustion of Al-Ni Precursor Al3Ni Foam Manufacture of Composite Structure with Hollow Pipe and Filling of Foam and Investigation of Pore Condition (Al-Ni 전구체의 연소합성 발포에 의한 Al3Ni 폼과 할로우 파이프의 복합구조체 제작 및 폼의 충진성과 기공상태 조사)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.617-622
    • /
    • 2019
  • In order to develop a process for manufacturing a composite structure of an intermetallic compound foam and a hollow material, the firing and pore form of the Al-Ni precursor in a steel pipe are investigated. When the Al-Ni precursor is foamed in a hollow pipe, if the temperature distribution inside the precursor is uneven, the pore shape distribution becomes uneven. In free foaming, no anisotropy is observed in the foaming direction and the pore shape is isotropic. However, in the hollow pipe, the pipe expands in the pipe axis direction and fills the pipe. The interfacial adhesion between $Al_3Ni$ foam and steel pipe is excellent, and interfacial pore and reaction layer are not observed by SEM. In free foaming, the porosity is 90 %, but it decreases to about 80 % in the foam in the pipe. In the pipe foaming, most of the pore shape appears elongated in the pipe direction in the vicinity of the pipe, and this tendency is more remarkable when the inside pipe diameter is small. It can be seen that the pore size of the foam sample in the pipe is larger than that of free foam, because coarse pores remain after solidification of the foam because the shape of the foam is supported by the pipe. The vertical/horizontal length ratio expands along the pipe axis direction by foaming in the pipe, and therefore circularity is reduced.

Effect of Phosphate-based Inhibitors on Pipe Corrosion of Drinking Water Supply (상수도 배급수관망의 부식방지를 위한 인산염계 방청제 적용에 관한 연구)

  • 이윤진;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.65-71
    • /
    • 2003
  • The injection concentration of corrosion inhibitor increases under the pH 7, temperature of 2$0^{\circ}C$, and alkalinity of 35 mg/l (as CaCO$_3$), the corrosion rate gradually decreased. When the corrosion inhibitor of 10 mg/l is injected, the corrosion rate for carbon steel pipe, galvanized steel pipe, and copper pipe reduces for 37, 66 and 61 % respectively that it is more efficient on galvanized steel pipe and copper pipe. As a result of examination of corrosion rate at pH 6, 7, and 8 when injecting 10 mg/l of corrosion inhibitor under the conditions of 2$0^{\circ}C$ in water temperature and 35 mg/l (as CaCO$_3$) in alkalinity, the efficiency of the corrosion inhibitor increases as the pH increases. For carbon steel pipe, it does not show much a difference with the change of the pH condition, but galvanized steel pipe and copper pipe clearly show the corrosion rate depending on the change of the pH condition. The efficiency of corrosion inhibitor is low as the concentration of residual chlorine is high, but it does not show a great influence at 0.4 mg/l or less. For each pipe type, in the case of carbon steel pipe, the range of increase of corrosion speed following the residual chloride is higher than the other pipe types. In the meantime, the effect following the residual chlorine in copper pipe is low.

Numerical investigation of effect of geotextile and pipe stiffness on buried pipe behavior

  • Candas Oner;Selcuk Bildik;J. David Frost
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.611-621
    • /
    • 2023
  • This paper presents the results of a numerical investigation of the effect of geotextile reinforcement on underlying buried pipe behavior using PLAXIS 3D. In this study, variable parameters such as the in-plane stiffness of the geotextile, the pipe stiffness, the soil stiffness, the footing width, the geotextile width, and the location of the geotextile reinforcement layer are investigated. Deflections and bending moments acting on the pipe are evaluated for different combinations of variables and are presented graphically. It is observed that with an increase in the in-plane stiffness of the geotextile reinforcement, there is a tendency for a decrease in both deflections in the pipe and bending moments acting on the pipe. Conversely, with an increase in the pipe stiffness, geotextile reinforcement efficiency decreases. In the investigated region of soil stiffness, for the given pipe and geotextile stiffness, an optimum efficiency of geotextile is observed in medium dense soils. Further, it is shown that relative lengths of geotextile and footing has an important role on geotextile efficiency. Lastly, it is also demonstrated that relative location of geotextile layer with respect to the buried pipe plays an important role on the geotextile efficiency in reducing the bending moments acting on the pipe and deflections in the pipe. In general, geotextiles are more efficient in reducing the bending moments as opposed to reducing deflections of the pipe. Numerical validation is done with an experimental study from the literature to observe the applicability of the numerical model used.

An Experimental Study of Liquid.Gas Heat Exchange Pipe Inserted Capillary Tube for Room Air-Conditioner (모세관 삽입 룸 에어컨용 액.가스 열교환 배관에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.702-708
    • /
    • 2006
  • This study shows the experimental characteristics of the double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for circulating of a liquid of high temperature, pressure and a gas of low temperature, pressure at the same time. So the functions of pipe and pipe's expansion and heat transfer are presented simultaneously. In the result, the temperature of gas refrigerant at the inlet of compressor increased about $5^{\circ}C$ by the heat transfer with liquid refrigerant in case of the double pipe. And liquid gas refrigerant which the temperature at the inlet of evaporator decreased about $3^{\circ}C$ comparing with the existing type flows into an evaporator COP of the double pipe increased about $7{\sim}10%$ comparing with that of the conventional pipe. And the noise of the double pipe at capillary tube is less than that of the conventional type about 3dB. Consequently. it is convinced the superiority of the double pipe in the heat loss and soundproofing aspect.

A Study on the Strength Change of Used Pipe Support (1) (재사용 파이프서포트의 내력변화 연구 (1))

  • Paik, Shin-Won;Ro, Min-Lae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable individual shores. In constructions site, pipe supports are usually used as shores. The strength of a pipe support is decreasing as it is frequently being used at the construction site. In this study, 2857 pipe supports were bought to fine out the strength change of used pipe support and unused pipe supports according to aging. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports almost equaled to the strength of new pipe supports until 191 days, but the strength of used pipe supports at 191 days was lower than the strength of new pipe supports. So, the strength of used pipe supports at 191 days was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the paresent study results will be able to provide a firm base to design slab formwork and test the performance of used temporary structure and prevent formwork collapses.

Design of the long perforated pipe in water treatment process using CFD (전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Bin, Jae-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.

A Practical Approach for Optimal Design of Pipe Diameters in Pipe Network (배관망에서의 파이프 직경 최적설계에 대한 실용적 해법)

  • Choi Chang-Yong;Ko Sang-Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.635-640
    • /
    • 2006
  • An optimizer has been applied for the optimal design of pipe diameters in the pipe flow network problems. Pipe network flow analysis, which is developed separately, is performed within the interface for the optimization algorithm. A pipe network is chosen for the test, and optimizer GenOpt is applied with Holder-Mead-O'Niell's simplex algorithm after solving the network flow problem by the Newton-Raphson method. As a result, optimally do-signed pipe diameters are successfully obtained which minimize the total design cost. Design cost of pipe flow network can be considered as the sum of pipe installation cost and pump operation cost. In this study, a practical and efficient solution method for the pipe network optimization is presented. Test system is solved for the demonstration of the present optimization technique.

A Study on the Strength Change of Used Pipe Support(III) (재사용 파이프서포트의 내력변화 연구(III))

  • Paik, Shin-Won;Choi, Soon-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.101-106
    • /
    • 2006
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. In constructions site, pipe supports are usually used as shores which are consisted of the slab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. Among the accidents and failures that occur during concrete construction, there are many formwork failures which usually happen at the time concrete is being placed. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KS F 8001. In this study, the strength of pipe support according to age, use frequency and load carrier was predicted using SPSS 12.0. It was known that the strength of pipe support using for 5 years was reduced to 42.8%. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a finn base to prevent formwork collapses.

A study on the strength Change of Used Pipe Support (재사용 파이프서포트의 내력변화 연구)

  • Baek, Sin-Won;Choe, Sun-Ju
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.38
    • /
    • pp.79-87
    • /
    • 2006
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. In constructions site, pipe supports are usually used as shores which are consisted of the stab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. Among the accidents and failures that occur during concrete construction, there are many formwork failures which usually happen at the time concrete is being placed. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KSF 8001. In this study, the strength of pipe support according to age, use frequency and load carrier was predicted using SPSS 12.0. It was known that the strength of pipe support using for 5 years was reduced to 42.8%. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a firm base to prevent formwork collapses.

  • PDF