• 제목/요약/키워드: Pipe-bends

검색결과 40건 처리시간 0.025초

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석 (Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis)

  • 오창식;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.505-511
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions fur pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

압력과 모멘트의 복합하중을 받는 곡관에 대한 유한요소 한계하중 해석 (Limit Loads for Pipe Bends under Combined Pressure and in-Plane Bending Based on Finite Element Limit Analysis)

  • 오창식;김윤재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.401-402
    • /
    • 2006
  • In the present paper, approximate plastic limit load solutions for pipe bends under combined internal pressure and bending are obtained from detailed three-dimensional (3-D) FE limit analyses based on elastic-perfectly plastic materials with the small geometry change option. The present FE results show that existing limit load solutions for pipe bends are lower bounds but can be very different from the present FE results in some cases, particularly for bending. Accordingly closed-form approximations are proposed for pipe bends under combined pressure and in-plane bending based on the present FE results. The proposed limit load solutions would be a basis of defective pipe bends and be useful to estimate non-linear fracture mechanics parameters based on the reference stress approach.

  • PDF

ESPI 를 이용한 곡관 감육 결함부의 변형률 분포 측정 (Strain Distribution Measurement for Wall Thinning Defect in Pipe Bends by ESPI)

  • 아흐터나심;김경석;정성욱;박종현;최정석;정현철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.120-125
    • /
    • 2007
  • Put Abstract text here The strain distribution measurement for wall thinned pipe bends by ESPI is presented. Defect types observed in the steel piping in the nuclear power plants (NPP) are the crack at the weld part and the wall thinning defect in the pipe bends. Especially, the wall thinning defects in the pipe bends due to the flow-accelerated corrosion (FAC) is a main type of defects observed in the carbon steel piping system. ESPI is one of the optical non-destructive testing methods and can measure the stress and the strain distribution of the object subjected by the tensile loading or the internal pressure. In this paper, the strain distribution of the wall thinned pipe bends due to the internal pressure will be measured by ESPI technique and the results are discussed. From the results, the size of the wall thinning defect can also be measured approximately.

  • PDF

곡관출구로부터 방출되는 펄스파에 관한 연구 (A Study on the Impulse Wave Discharged from the Exit of a Right-Angle Pipe Bend)

  • 이동훈;허성춘;권용훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.634-639
    • /
    • 2001
  • The current study addresses experimental and computational work of impulse wave discharged from the exit of two kinds of right-angle pipe bends, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.02 to 1.20 is employed to obtain the impulse wave propagating outside the exit of the pipe bends. A Schlieren optical system visualizes the impulse wave discharged from the exit of the pipe bends at an instant. The experimental data of the magnitude of the impulse wave and its propagating directivity are analyzed to characterize the impulse waves discharged from the exit of the pipe bends and compared with those discharged from a straight pipe. Computational results well predict the experimented dynamic behaviors of the impulse wave. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulse wave and its directivity toward to the pipe axis, compared with the straight pipe and right-angle smooth bend. It is believed that the right-angle miter bend pipe can playa role of a passive control against the impulse wave.

  • PDF

감육 곡관의 붕괴거동에 미치는 곡관 굽힘각의 영향 (Effect of Bend Angle on the Collapse Behavior of Locally Wall Thinned Pipe Bends)

  • 나만균;김진원
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1269-1275
    • /
    • 2006
  • The purpose of this study is to investigate the effect of bend angle on the collapse behavior of locally wall thinned pipe bends. For this purpose, the present study performed three-dimensional finite element analysis on the 30-, 60-, and 90-degree pipe bends with local wall thinning at the center of intrados, extrados, and crown, and evaluated the collapse moment for different thinning dimensions under closing- and opening-mode bending with a constant internal pressure. The results showed that, for intrados and extrados wall thinning, the reduction in the collapse moment due to local wall thinning became significant with decreasing bend angle of pipe bends. This effect of bend angle was enhanced with increasing thinning dimensions, and it was clearer fur opening-mode bending than for closing-mode bending. For crown wall thinning, however, the effect of bend angle was unclear and was less sensitive to the change of wall thinning shapes.

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

축방향 관통균열이 존재하는 곡관의 한계 하중 및 공학적 J-적분 예측 (Limit Load and Approximate J-Integral Estimates for Axial-Through Wall Cracked Pipe Bend)

  • 송태광;김종성;진태은;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.562-569
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J estimates for axial through-wall cracked pipe bends under internal pressure and in-plane bending. Geometric variables associated with a crack and pipe bend are systematically varied, and three possible crack locations (intrados, extrados and crown) in pipe bends are considered. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, effect of bend and crack geometries on plastic limit loads for axial through-wall cracked pipe bends under internal pressure and in-plane bending are quantified, and closed-form limit solutions are given. Based on proposed limit load solutions, a J estimation scheme for axial through-wall cracked pipe bends under internal pressure and in-plane bending is proposed based on reference stress approach.

냉간 굽힘 가공된 곡관의 인장물성치 예측 (Estimation of Tensile Properties of Pipe Bends Manufactured by Cold-Bending)

  • 김진원;이미연;이사용
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.1059-1064
    • /
    • 2012
  • 본 연구에서는 냉간 굽힘 후 잔류응력 제거 열처리된 곡관에서 기계적물성치를 파악하기 위해서, 냉간 굽힘과 잔류응력 제거 열처리를 모사한 모사시편을 이용하여 인장시험을 수행하였다. 시험 결과로부터 냉간 가공 후 잔류응력 제거 열처리를 수행할지라도 재료의 강도는 냉간 가공 전에 비해 증가하고 연성은 감소되는 것을 확인하였다. 또한, 강도 증가와 연성 감소는 냉간 가공시 적용된 변형률이 클수록 심화되었다. 따라서, 냉간 굽힘시 변형이 크게 발생하는 곡관의 외호부와 내호부는 직관에 비해 강도는 높고 연성은 낮을 것으로 예측되며, 곡관의 측면은 굽힘 가공 전의 직관과 유사한 기계적물성치를 보일 것으로 예측되었다.

면외 굽힘하중과 내압의 복합하중을 받는 곡관의 소성하중 (Plastic loads of pipe bends under combined pressure and out-of-plane bending)

  • 이국희;김윤재;박치용;이성호;김태룡
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1836-1841
    • /
    • 2007
  • Based on three-dimensional (3-D) FE limit analyses, this paper provides plastic limit and TES(Twice-Elastic-Slope) loads for pipe bends under combined pressure and out-of-plane bending. The plastic limit loads are determined from FE limit analyses based on elastic-perfectly-plastic materials using the small geometry change option, and the FE limit analyses using the large geometry change option provide TES plastic loads. A wide range of parameters related to the bend geometry is considered. Based on the FE results, closed-form approximations of plastic limit and TES plastic load solutions for pipe bends under out-of-plane bending are proposed.

  • PDF