• Title/Summary/Keyword: Pipe thickness

Search Result 439, Processing Time 0.03 seconds

Effect of leg of fillet on stress distribution in weldments of large steel water pipes (수도용 대형 강관 용접부의 응력분포에 미치는 각장(leg of fillet)의 영향)

  • 김성도;배강열;나석주
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.54-62
    • /
    • 1992
  • Large steel water pipes are joined prevalently by bell and method and welded at inside and outside of lapped parts. According to the Korean Standard(KS) for fabrication of water pipes, the weldments are designed to have the length of leg which is same as or larger than the thickness of the pipe. It is recently pointed out that the standard size of weldments is too large, which results in an excessive consumption of material and labor. In this study, several cases of weldments having different sizes were investigated to reduce the length of leg to the effective size. For each case, the analysis of stresses was carried out to evaluate the safety of the welded pipes by using a package program, ANSYS, under the consideration of the loading condition of water pipes which includes the soil pressure on the pipe, the load over the road, and temperature change of the pipe. The results of this study revealed that the weldment which has the length of leg of the size over 0.7*thickness of the pipe could provide a stress level below the yield strength. Especially when the length of leg is 85% of the wall thickness, the maximum equivalent stress is only slightly higher than that of the leg of fillet of the size of 1.0*pipe thickness.

  • PDF

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions on failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Surface Temperature Control of an Insulated Horizontal Pipe under Thermal Radiation Environment (복사효과를 포함하는 수평관 표면의 온도제어)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • Procedures for estimation of insulation thickness for a horizontal pipe for condensation control or personnel protection has been investigated, parallel to the previous work of a vertical wall case. Parameters include pipe diameter, emissivity, thermal conductivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation, specially for the case of high temperature application with low Bi. The effect of surface radiation in such case could be up to 65% of the total. Required insulation thickness for the surface temperature control increases as pipe diameter increases and as surface emissivity decreases. Adequate revision of specifications or standards to include newly invented insulation materials with high emissivity has been also suggested.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

Experimental Study on Coefficient of Flow Convection (유수대류계수에 관한 실험적 연구)

  • 정상은;오태근;양주경;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.297-302
    • /
    • 2000
  • Pipe cooling method is widely used for reduction of hydration heat and control of cracking in mass concrete structures. However, in order to effectively apply pipe cooling systems to concrete structure, the coefficient of flow convection relating the thermal transfer between inner stream of pipe and concrete must be estimated. In this study, a device measuring the coefficient of flow convection is developed. Since a variation of thermal distribution caused by pipe cooling has a direct effect in internal forced flows, the developed testing device is based on the internal forced flow concept. Influencing factors on the coefficient of flow convection are mainly flow velocity, pipe diameter and thickness, and pipe material. finally a prediction model of the coefficient of flow convection is proposed using experimental results from the developed device. According to the proposed prediction model, the coefficient of flow convection increases with increase in flow velocity and decreases with increase in pipe diameter and thickness. Also, the coefficient of flow convection is largely affected by the type of pipe materials.

  • PDF

Effect of Design Factors in a Pump Station on Pressure Variations by Water Hammering (가압 펌프장에서 설계인자들이 수격에 의한 압력변동에 미치는 영향)

  • Park, Jong-Hoon;Sung, Jaeyong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.15-27
    • /
    • 2021
  • In this study, the effect of design factors in a pump station on the pressure variations which are the main cause of water hammering has been investigated by numerical simulations. As design factors, the flow rate, Young's modulus, diameter, thickness, roughness coefficient of pipeline are considered. The relationships between the pressure variations and the design factors are analyzed. The results show that the pressure variation increases sensitively with the flow rate and Young's modulus, and increases gradually with the thickness and roughness coefficient of pipe, whereas it decreases with the pipe diameter. The wavelength of the pressure wave becomes longer for a smaller Young's modulus, a smaller pipe thickness and a bigger pipe diameter. These relationships are nondimensionalized, and logarithmic curve-fitted functions are proposed by regression analysis. Most effective factors on the nondimensional pressure variation is Young's modulus. Flow rate, roughness coefficient, relative thickness and pipe diameters are the next impact factors.

Strength of Pipe Type Door Impact Beam with Changed Bracket Mounting Method and TRP Application (브라켓 마운팅 방법 변경과 TRP 적용에 따른 강관형 도어 임팩트 빔 강도)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2016
  • Door impact beam plays a key role in minimizing the occupant injury within the side impacted vehicle through preventing intrusion of the impacting vehicle. Steel pipe type door impact beam has been widely adopted since it has simple structure and the overall strength is easily determined according to the pipe size. The brackets welded at pipe ends connect the door impact beam and the door panels by spot welds. In this study, first, the effect of pipe thickness, bracket thickness and door mounting stiffness was respectively analyzed. Next, application of the tailor rolled pipe was examined and several alterations of the bracket mounting method were considered. Application of tailor rolled pipes with superior bracket mounting method showed remarkable strength enhancement and weight reduction possibility in comparison with the current door impact beam.

Defect Depth Measurement of Straight Pipe Specimen Using Shearography (전단간섭계를 이용한 직관시험편의 결함 깊이 측정)

  • Chang, Ho-Seob;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.170-176
    • /
    • 2012
  • In the nuclear industry, wall thinning defect of straight pipe occur the enormous loss in life evaluation and safety evaluation. To use non-destructive technique, we measure deformation, vibration, defect evaluation. But, this techniques are a weak that is the measurement of the wide area is difficult and the time is caught long. In the secondary side of nuclear power plants mostly used steel pipe, artificiality wall thinning defect make in the side and different thickness make to the each other, wall thinning defect part of deformation measure by using shearography. In addition, optical measurement through deformation, vibration, defect evaluation evaluate pipe and thickness defects of pressure vessel is to evaluate quantitatively. By shearography interferometry to measure the pipe's internal wall thinning defect and the variation of pressure use the proposed technique, the quantitative defect is to evaluate the thickness of the surplus. The amount of deformation use thickness of surplus prediction of the actual thickness defect and approximately 7 percent error by ensure reliability. According to pressure the amount of deformation and the thickness of the surplus through DB construction, nuclear power plant pipe use wall thinning part soundness evaluation. In this study, pressure vessel of thickness defect measure proposed nuclear pipe of wall thinning defect prediction and integrity assessment technology development. As a basic research defected theory and experiment, pressure vessel of advanced stability and soundness and maintainability is expected to contribute foundation establishment.

Mechanical characteristics of hollow shear connectors under direct shear force

  • Uenaka, Kojiro;Higashiyama, Hiroshi
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.467-480
    • /
    • 2015
  • The steel-concrete composite decks have high fatigue durability and deformability in comparison with ordinary RC slabs. Withal, the steel-concrete composite deck is mostly heavier than the RC slabs. We have proposed herein a new type of steel-concrete composite deck which is lighter than the typical steel-concrete composite decks. This can be achieved by arranging hollow sectional members as shear connectors, namely, half-pipe or channel shear connectors. The present study aims to experimentally investigate mechanical characteristics of the half-pipe shear connectors under the direct shear force. The shear bond capacity and deformability of the half-pipe shear connectors are strongly affected by the thickness-to-diameter ratio. Additionally, the shear strengths of the hollow shear connectors (i.e. the half-pipe and the channel shear connectors) are compared. Furthermore, shear capacities of the hollow shear connectors equivalent to headed stud connectors are also discussed.