• 제목/요약/키워드: Pipe burst

검색결과 46건 처리시간 0.026초

결함이 있는 배관의 파열압력 예측을 위한 유한요소 해석기법 (Finite Element Analyses for the Estimates of the Burst Pressures of the Pipes with Defects)

  • 강혜민;오창식;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.305-310
    • /
    • 2008
  • This paper provides the methods to estimate the burst pressures of the pipes with defects, based on finite element analyses. FE codes are frequently adopted for the simulations of the burst tests of the pipes with defects. However, those do not give the burst pressure directly. Because the post-processing should be followed; determination of the fracture strains in accordance with triaxialities, monitoring the strains of pipes, etc. In the present work, these efforts are implemented in the user subroutine UHARD within the general-purpose FE code, ABAQUS. Four fracture criterions are introduced to estimate the burst pressure of pipes, and a simple fracture strain estimate is also developed. FE analyses for the pipe with gouge and corrosion are performed, and the results are compared with the experiment results.

  • PDF

화장실 배수관에 따른 배수소음 평가 (Rating of Noise Emission by Plumbing system in Bathroom)

  • 정진연;이성호;정갑철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.923-927
    • /
    • 2003
  • The aim of this study is to investigate the characteristics and quantity of the noise reduction by pipe material, wrapped pipe with glass wool and installed pipe height The characteristics of noise emission from drain-pipes is as follows. The noise reduction pipe in PVC can reduce noise levels in 7-10㏈ and the cast-iron pipe can reduce in 14㏈compared with the normal PVC pipe. In these days, the glass wool was used for preventing the burst and the noise reduction. But the glass wool for wrapping pipe is not effective to the noise reduction. The characteristics of noise emission from various installed pipe height were measured As the ceiling space of the remodeled building was raised, the noise level was troubled by increasing of the vertical pipe length.

  • PDF

파열 시험을 통한 감육곡관의 손상압력에 미치는 원주방향 결함 폭과 굽힘하중의 영향 평가 (Evaluating on the Effects of Circumferential Thinning Angle and Bending Load on the Failure Pressure of Wall-Thinned Elbow through Burst Tests)

  • 김진원;나연수;이성호
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.14-19
    • /
    • 2006
  • This study performed burst tests using real-scale pipe elbow containing simulated local wall-thinning to evaluate the effects of circumferential thinning angle and bending load on the failure pressure of wall-thinned elbow. The tests were carried out under the loading conditions of internal pressure and combined internal pressure and bending loads. Three circumferential thinning angles, ${\theta}/{\Pi}=0.125,\;0.25,\;0.5$, and different thinning locations, intrados and extrados, were considered. The test results showed that the failure pressure of wall-thinned elbow decreased with increasing circumferential thinning angle for both thinning locations. This tendency is different from that observed in the wall-thinned straight pipe. Also, the failure pressure of intrados wall-thinned elbow was higher than that of extrados wall-thinned elbow with the same thinning depth and equivalent thinning length. In addition, the effect of bending moment on the failure pressure was not obvious.

삼축응력 기반의 파괴변형률 기준을 적용한 가우지 손상배관의 건전성 평가 (Structural Integrity Assessments of Pressurized Pipes with Gouge using Stress-Modified Fracture Strain Criterion)

  • 오창균;김윤재;박진무;백종현;김영표;김우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.808-813
    • /
    • 2005
  • Structural integrity assessment of defected pipe is important in fitness for service evaluation and proper engineering assessment is needed to determine whether pipelines are still fit for service. This paper present a failure prediction of gas pipes made of APIl X65 steel with gouge using stress-modified true fracture strain, which is regarded as a criterion of ductile fracture. For this purpose, API X65 pipes with gouge are simulated using elastic-plastic FE analyses with the proposed ductile failure criterion and the resulting burst pressures are compared with experimental data. Agreements are quite good, which gives confidence in the use of the proposed criteria to defect assessment fer gas pipelines. Then, further extensive finite element analyses are performed to obtain the burst pressure solution of pipes with gouge as a function of defect depth, length and pipeline geometry.

  • PDF

원주방향 균열이 발생되는 곡관 감육부의 형상적 특성 (Geometric Characteristic of Wall-thinning Defect Causing Circumferential Crack in Pipe Elbows)

  • 김진원;이성호
    • 한국압력기기공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.27-34
    • /
    • 2011
  • The objective of this study is to classify the geometry of wall-thinning defect that causes a circumferential crack in the pipe elbows subjected to internal pressure. For this objective, first of all a criterion to determine the occurrence of circumferential cracking at wall-thinned area was developed based on finite element simulation for burst tests of pipe elbow specimens that showed axial and circumferential cracking at wall-thinned area. In addition, parametric finite element analysis including various wall-thinning geometries, locations, and pipe geometries was conducted and the wall-thinning geometries that initiate circumferential crack were determined by applying the criterion to the results of parametric analysis. It showed that the circumferential crack occurs at wall-thinning defect, which has a deep, wide, and short geometry. Also, it is indicated that the pipe elbows with larger radius to thickness ratio are more susceptible to circumferential cracking at wall-thinned area.

상수관망의 파이프 파괴확률 산정을 위한 신뢰성 해석 (Reliability Analysis for Probability of Pipe Breakage in Water Distribution System)

  • 권혁재;이철응
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.609-617
    • /
    • 2008
  • Water pipes are supposed to deliver the predetermined demand safely to a certain point in water distribution system. However, pipe burst or crack can be happened due to so many reasons such as the water hammer, natural pipe ageing, external impact force, soil condition, and various environments of pipe installation. In the present study, the reliability model which can calculate the probability of pipe breakage was developed regarding unsteady effect such as water hammer. For the reliability model, reliability function was formulated by Barlow formula. AFDA method was applied to calculate the probability of pipe breakage. It was found that the statistical distribution for internal pressure among the random variables of reliability function has a good agreement with the Gumbel distribution after unsteady analysis was performed. Using the present model, the probability of pipe breakage was quantitatively calculated according to random variables such as the pipe diameter, thickness, allowable stress, and internal pressure. Furthermore, it was found that unsteady effect significantly increases the probability of pipe breakage. If this reliability model is used for the design of water distribution system, safe and economical design can be accomplished. And it also can be effectively used for the management and maintenance of water distribution system.

전산유체역학 배관 곡면 침식 모사를 통한 배관 실패 주기 분석 (Analysis of Pipe Failure Period Using Pipe Elbow Erosion Model by Computational Fluid Dynamics (CFD))

  • 남정용;이용규;박건희;이건학;이원보
    • Korean Chemical Engineering Research
    • /
    • 제56권1호
    • /
    • pp.133-138
    • /
    • 2018
  • 2000년대 이후 대두된 안전, 환경 이슈들로 인해 안전 관리는 더욱 더 중요해졌다. 하지만 안전 관리는 많은 경험적 데이터들을 요구하므로 한계점들이 많다. 안전 분야 중 하나인 배관 안전의 경우 현재 배관을 관리하는 시뮬레이션 프로그램들이 존재하지만, 배관 내부 침식에 대해서는 데이터를 얻기 힘들어 시뮬레이션에 반영이 잘 되어있지 않은 상태이다. 이러한 문제점에서 착안해 본 연구에서는 전산유체역학(CFD)을 이용하여 배관 내부의 곡면에 일어나는 침식을 모사하였고, 계산한 침식 속도를 바탕으로 한계상태함수를 이용하여 배관의 실패 주기를 분석하였다. CFD 대상 배관의 경우 여수 산업 단지에 실제로 운영되고 있는 표본을 사용하였다. DPM (Discrete Phase Model)과 부식 모델을 이용하여 CFD 결과로 $3.093mm{\cdot}yr^{-1}$ 수치의 침식 속도를 얻을 수 있었고, 이 결과를 한계상태함수에 적용한 결과 배관에 누출(leak)을 유발하는데 14.2년, 파열(burst)를 유발하는데 28.2년이라는 실패 주기를 얻어낼 수 있었다. 이러한 과정들을 통해 배관 곡면 침식이 배관 안전 진단에 유효한 실패 모드임을 도출할 수 있었다. 본 연구는 실패 연도를 구할 수 있는 방법론들을 제시하여 데이터의 한계점을 극복하고, 배관 안전 진단에 좀 더 정밀하고 발전된 방법을 제시한 것에 대해 의의를 가진다.

Statistical Approach for Corrosion Prediction Under Fuzzy Soil Environment

  • Kim, Mincheol;Inakazu, Toyono;Koizumi, Akira;Koo, Jayong
    • Environmental Engineering Research
    • /
    • 제18권1호
    • /
    • pp.37-43
    • /
    • 2013
  • Water distribution pipes installed underground have potential risks of pipe failure and burst. After years of use, pipe walls tend to be corroded due to aggressive soil environments where they are located. The present study aims to assess the degree of external corrosion of a distribution pipe network. In situ data obtained through test pit excavation and direct sampling are carefully collated and assessed. A statistical approach is useful to predict severity of pipe corrosion at present and in future. First, criteria functions defined by discriminant function analysis are formulated to judge whether the pipes are seriously corroded. Data utilized in the analyses are those related to soil property, i.e., soil resistivity, pH, water content, and chloride ion. Secondly, corrosion factors that significantly affect pipe wall pitting (vertical) and spread (horizontal) on the pipe surface are identified with a view to quantifying a degree of the pipe corrosion. Finally, a most reliable model represented in the form of a multiple regression equation is developed for this purpose. From these analyses, it can be concluded that our proposed model is effective to predict the severity and rate of pipe corrosion utilizing selected factors that reflect the fuzzy soil environment.

실배관 파열실험을 통한 국부감육 곡관 손상압력 평가 (Failure Pressure Evaluation of Local Wall-Thinned Elbows by Real-scale Burst Tests)

  • 김진원;박치용;이성호
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1017-1024
    • /
    • 2007
  • This study performed a series of burst tests at ambient temperature using real-scale elbow specimen containing a local wall-thinning defect at it's intrados or extrados and evaluated failure pressure of locally wall-thinned elbows. In the experiment, a 90-degree 100A, Sch. 80 standard elbow was employed, and various wall-thinning geometries, such as length, depth, and circumferential angle, were considered. From the results of experiment, the dependences of failure pressure of wall-thinned elbows on the defect geometries and locations were investigated. In addition, the reliability of existing models was examined by comparing the tests data with the results predicted from existing failure pressure evaluation models for locally wall-thinned elbow.

가스배관에서 원주 및 심 용접부의 부식손상 부위에 대한 파열압력 평가 (The Evaluation of Burst Pressure for Corroded Weld in Gas Pipeline)

  • 김영표;김우식;오규환
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 추계학술발표대회 개요집
    • /
    • pp.165-167
    • /
    • 2004
  • The failure pressure for corroded pipeline was measured by burst testing and classified with respect to corrosion sizes and corroded regions - the body, the girth weld and the seam weld of pipe. A series of finite element analyses were performed to obtain a limit load solution for corrosion defects on the basis of burst test. As a result, the criteria for failure assessment of corrosion defect within the body, the girth weld and the seam weld of API 5L X65 gas pipeline were proposed.

  • PDF