• Title/Summary/Keyword: Pipe bending

Search Result 290, Processing Time 0.027 seconds

Measurement of The Thermal Transfer Coefficient Predicting Efficiency of The Heat Pipe (히트파이프 성능예측 열전달계수 측정)

  • Lim, Soo-Jung;Moon, Jong-Min;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2039-2042
    • /
    • 2008
  • Recently, Electronic & Electrical Products have problems how to reduce heat in trend reducing size and increasing speed. heat pipes worked by latent heats can solve problems for effective and quiet electronic applications. Heat Pipes have to be suitably designed for the external conditions due to showing optimum performance. it has influence on efficiency of heat pipes to the exterior structure changed by length, bending angle, diameter. Designing heat pipes has depended on experience from trial and error. this method wasted too many resources, but can't guarantee efficiency. to prevent those wastes, this study aims at making the thermal transfer coefficient predicting efficiency. In this study, the thermal transfer coefficient has been made from experimental results that used variables - lengths between heat source and radiation, bending angles, diameters of heat pipes. variables become non-dimensional in modeling process for making the coefficient.

  • PDF

A Study on the Friction Welding for Light Piston-Rod(SM45C/SM45C-Pipe) (경량 피스톤 로드를 위한 마찰용접 적용연구(SM45C/SM45C-Pipe 사용))

  • Min, Byung-Hoon;Lim, Hyung-Taek;Min, Taeg-Ki
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • Various research to reduce weight of a car is achieving. This research is tendencious to manufacture solid piston rod of shock absorber as hollow piston rod using friction welding. This study deals with the friction welding of SM45C to SM45C-Pipe that is used in car shock absorber, The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied of friction weld, and so the results were as follows. 1. In tensile strength, the hole processing is better than non-hole processing. 2. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 869MPa, which is 103% of SM45C's tensile strength and 91% of SM45C's Pipe. 3. When the friction time was 2.0seconds under the conditions, the maximum bending strength of the friction weld happened to be 1599MPa, which is 80% of SM45C's bending strength and 118% of SM45C's Pipe.

EVALUATION MODEL FOR RESTRAINT EFFECT OF PRESSURE INDUCED BENDING ON THE PLASTIC CRACK OPENING OF A CIRCUMFERENTIAL THROUGH-WALL CRACK

  • Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • This paper presents a closed-form model for evaluating the restraint effect of pressure induced bending on the opening of a circumferential through-wall crack, which is considered plastic deformation behavior. Three-dimensional finite element analyses with different crack lengths, restraint conditions, pipe geometries, magnitudes of internal pressure, and tensile properties were used to investigate the influence of each parameter on the pressure-induced bending restraint on the crack opening displacement. From these investigations, an analytical model based on elastic-perfectly plastic material was developed in terms of the crack length, symmetric restraint length, mean radius to thickness ratio, axial stress corresponding to the internal pressure, and normalized crack opening displacement evaluated from a linear-elastic crack opening condition. Finite element analyses results demonstrate that the proposed analytical model reliably estimated the restraint effect of pressure-induced bending on the plastic crack opening of a circumferential through-wall crack and properly reflected the dependence on each parameter within the range over which the analytical expression was derived.

Buckling response of offshore pipelines under combined tension and bending

  • Gong, Shun-Feng;Ni, Xing-Yue;Yuan, Lin;Jin, Wei-Liang
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.805-822
    • /
    • 2012
  • Offshore pipelines have to withstand combined actions of tension and bending during deepwater installation, which can possibly lead to elliptical buckle and even catastrophic failure of whole pipeline. A 2D theoretical model initially proposed by Kyriakides and his co-workers which carried out buckling response analysis of elastic-plastic tubes under various load combinations, is further applied to investigate buckling behavior of offshore pipelines under combined tension and bending. In association with practical pipe-laying circumstances, two different types of loadings, i.e., bent over a rigid surface in the presence of tension, and bent freely in the presence of tension, are taken into account in present study. In order to verify the accuracy of the theoretical model, numerical simulations are implemented using a 3D finite element model within the framework of ABAQUS. Excellent agreement between the results validates the effectiveness of this theoretical method. Then, this theoretical model is used to study the effects of some important factors such as load type, loading path, geometric parameters and material properties etc. on buckling behavior of the pipes. Based upon parametric studies, a few significant conclusions are drawn, which offer a theoretical reference for design and installation monitoring of deepwater pipelines.

Development of Bending Machine with High Efficiency and Precision Forming (고효율 배관용 정밀성형 벤딩머시인 개발)

  • Mun, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Soft copper tube is one of the popular materials which are used for shipbuilding, automobiles, and freezing and HVAC equipment. However, these materials have problems that they cause occasionally outside wrinkle, spring back, wall thinning phenomena. In this study, to avoid these phenomena, was manufactured a mild materials devoted bending machine, which selected a bending method where the mandrel presses the pipe along with the sliding guide rail during bending process. During the course of confirming this performance, it was found that as the diameter of copper tube used for materials became smaller, the spring back phenomenon increased. And as the bending angle became larger, it became larger. In addition, we could manufacture mold products which scarcely generated wrinkle when bending copper tubes.

Finite Element Based Stress Concentration Factors for Pipes with Local Wall Thinning (유한요소해석을 이용한 국부 감육배관에 대한 응력집중계수 제시)

  • Son, Beom-Goo;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1014-1020
    • /
    • 2004
  • The present work complies the elastic stress concentration factor for a pipe with local wall thinning, based on detailed three-dimensional elastic FE analysis. To cover practically interesting cases, a wide range of pipe and defect geometries are considered, and both internal pressure and global bending are considered. Resulting values of stress concentration factors are tabulated for practical use, and the effect of relevant parameters such as pipe and defect geometries on stress concentration factors are discussed. The present results would provide valuable information to estimate fatigue damage of the pipe with local wall thinning under high cycle fatigue.

Study on Structural Behavior of Pipe Loops Using CAESAR-II (CAESAR-II를 이용한 파이프 루프의 구조 거동 특성 연구)

  • Park, Chi-Mo;Yoon, Seong-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. The structural design of these pipes mostly relies on the commercial code, CAESAR-II, which was especially developed for the structural analysis of pipes. This study conducted stress analyses of the same pipe unit, including loops, using both CAESAR-II and MSC/NASTRAN, and compared the results to investigate the characteristics of CAESAR-II. A parametric study was then conducted of the various design variables of pipe loops using CAESAR-II to draw some useful information about the structural characteristics of the loops.

Effective numerical approach to assess low-cycle fatigue behavior of pipe elbows

  • Jang, Heung Woon;Hahm, Daegi;Jung, Jae-Wook;Hong, Jung-Wuk
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.758-766
    • /
    • 2018
  • We developed numerical models to efficiently simulate the low-cycle fatigue behavior of a pipe elbow. To verify the model, in-plane cyclic bending tests of pipe elbow specimens were conducted, and a through crack occurred in the vicinity of the crown. Numerical models based on the erosion method and tie-break method are developed, and the numerical results are compared with experimental results. The calculated results of both models are in good agreement with experimental results, and the model using the tie-break method possesses two times faster calculation speed. Therefore, the numerical model based on the tie-break method would be beneficial to evaluate the strength of piping systems under seismic loadings.