• Title/Summary/Keyword: Pipe Joint

Search Result 170, Processing Time 0.022 seconds

Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses (파이프 골조 온실의 조립 연결구 내력 시험)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.113-119
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. Therefore as it is installed, its direction should be taken into consideration. The collapse load of pipes connected with a joint pin was lower than that of single pipes. In the part of frame member at which the great bending moment occurs, the use of joint pin should be avoided. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe. In case that the external forces acting on left and right rafter are different. a unsymmetrical rotational force is produced at the multi span joint. If it is expected that the actual bending moment on the multi span joint is larger than resistant moment of T-clamp, a reinforcement to safely resist the rotational force is required.

  • PDF

A Study on Fusion Welding Strength of PE pipe (PE배관의 융착 강도에 관한 연구)

  • Jun, Hung-Won;Kim, Yong-Soo;Tae, Soon-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.16-21
    • /
    • 2002
  • At present the Polyethylene piping, on supporting LNG is widely used because of it's disposition which are anti-corrosion flexible and so on. However, it has a few kinds of risk which are the possibility of piping leak, the character of easily corroded and so on. For giving solution, this study is intended to experiment the intension of the PE pipe after melted and when it is melting, the condition which are temperature and pressure is changed. the melting condition in temperature and pressure is adapted identically. After melting, it's joint is tested as intension. The result is that the effect of temperature in intension is more effective than pressure. In $210^{\circ}C$, $20kg/cm^{2}$ condition, the melting intension has the highest. Compare to the Butt melting joint and the Saddle melting joint, the former was $214kg/cm^{2}$ and the latter was $50kg/cm^{2}(bead\;2{\sim}3mm)$ and $73kg/cm^{2}(bead\;5{\sim}7mm)$. It means that the Butt melting method has more intensive than saddle. Consequently, the result shows that the liability and safety when pipe melting method is used will improve in pipe installation.

A Study on the Production Mechanisms of Residual Stress in Welded T-joint of Steel Pipe Member (T형 강관 용접 이음부의 잔류응력 생성기구에 관한 연구)

  • 장경호;장갑철;경장현;이은택
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2003
  • Steel members have advantages of resisting torsion and axial compression. In design, residual stresses at the welded joint of T-shape steel pipes are one of the most important points to be considered. In this paper, characteristics of residual stresses of welded joints are clarified by carrying out 3D non-steady heat conduction analysis and 3D thermal elastic-plastic FE-analysis. According to the results, the production mechanism of residual stresses at the welded joint of T-shape steel pipe is clarified. In this paper, circumferential stresses depended on thermal histories but axial and radial stresses were more dependent on geometrical shape than thermal histories. Residual stresses in the axial direction on the lower part of pipe member were tensile, controlled by geometrical shape. However, in case of middle part, residual stresses in all the directions were controlled by thermal histories.

A study on the stress and strain during welding of plate-to-pipe joint (평판-관 구조물 용접시 발생하는 응력 및 변형율에 관한 연구)

  • 나석주;김형완
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.30-39
    • /
    • 1986
  • In manufacturing of pipe walls for boiler units, distortion can result in pipe-web-pipe joints from the nonuniform expansion and contraction of the weld metal and the adjacent base metal during heating and cooling cycle of the welding process. In this study, the stresses and strains during longitudinal welding of the plate-to-pipe joint were investigated. Using the method of successive elastic solution, longitudinal stresses and strains during and after welding were calculated from the information of temperature distributions obtained by Rosenthal's equations. In order to confirm the validity of the numerical results, the temperature and residual stress distributions were measured and compared with the calculated results. In spite of some assumptions, the one-dimensional analytical results of residual stresses were in fairly good agreement with the experimental ones. The residual stresses due to welding of plate-to-pipe joints are tensile near the weld line and compressive in the base metal as in the welding of plates. the amount and distribution of residual stresses were deeply dependent on the heat input ratio of the plate and pipe.

  • PDF

Numerical Analysis on the Stress and Deformation Behavior Characteristics of Flexible Joint for a Gas Pipe (가스배관용 플렉시블 조인트의 응력 및 변형거동특성에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Kyung-Seob
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2011
  • In this study, the stress and deformation behavior characteristics of a flexible joint for a gas pipe have been analyzed by a finite element method. These characteristic results may investigate the strength safety analysis of a flexible joint, which is composed by a spiral corrugation pipe or a rectangular corrugation model and a plane pipe. The FEM computed results show that an optimized spiral corrugation pipe model is a inclined angle of $4.7^{\circ}$ and a corrugation height of 1.5mm. And also, a rectangular corrugation pipe model of $90^{\circ}$ is recommended in strength safety rather than a spiral corrugation pipe with an inclined angle. Thus, a corrugated pipe for an increased strength safety is to recommend a reduced pitch and curvature radius of an inclined corrugation.

Implementation of CAM Program for 6-Axis CNC Pipe Coaster (6축 CNC 파이프 코스터 전용 CAM 프로그램 구현)

  • Lho, Tae-Jung;Lee, Wook-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2202-2209
    • /
    • 2009
  • Joint paths are induced mathematically for many kinds of joint pattern between master- and sub-pipes. By compensating them with root gap of welds and kerf width, real cutting paths are determined. Their NC codes are generated, and the paths generated by NC code are verified by a ghost function. A beveling is implemented through tilting a torch in the A- and B-axis direction for 8 sections in the chuck rotation of C-axis. The effective CAM program was developed specially for 6-axis CNC pipe coasters which cut a master or sub- pipe along the cutting path and simultaneously fulfill a beveling process.

Development of Automatic 3-Axis Pipe Profile-Cutting System with Bevelling of Welds Using PLC (PLC를 이용하여 궤적절단과 동시에 용접부 개선이 가능한 자동 3축 파이프 형상절단 시스템 개발)

  • Lho, Tae-Jung;Kim, Hwa-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3066-3073
    • /
    • 2009
  • Joint paths of master and branch pipes are induced mathematically for many kinds of joint patterns between both pipes in 3-axis pipe profile-cutting machines. By compensating them with a kerf width, the real cutting paths are determined, and their CL-data are generated, and the tool paths generated by CL-data are verified by a ghost function. A bevelling of welds is implemented through tilting a cutting torch in the $\beta$-axis direction for 8 sections in the chuck rotation of $\alpha$-axis. A PLC controls simultaneously position and velocity in a real time for $\alpha$, X, $\beta$-axis by loading CL-data generated. We developed the PLC-controlled 3-axis pipe profile-cutting system which can cut a master or branch pipe along the cutting path and simultaneously do a bevelling process.

Analytical Study of HAT Joint between PHC Pile and Steel Pipe Column (강재기둥과 PHC 파일을 연결하는 반구형 접합부(HAT Joint)의 유한요소 해석 PART I : 원형강관기둥)

  • Oh, Jin-Tak;Lee, Yeun-Seung;Kim, Sang-Bong;Ju, Young-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • To overcome disadvantages of usual spread foundation in large space structure, some prototypes of a joint of the PHC pile to steel pipe column that directly connects a column to a PHC pile are analytically studied. With the consideration of strength requirement and stress concentration of joint of the PHC pile to column, we suggest the most appropriate one.

Experimental Analysis on Yield Strength of Pipe Connectors and Joints for Pipe Framed Greenhouses (파이프골조 온실의 조립연결구 내력에 관한 실험적 연구)

  • Nam, Sang-Woon;Kim, Moon-Ki;Kwon, Hyuck-Jin
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.271-274
    • /
    • 2001
  • Experiments on the yield strength of pipe connectors made of metal wire, joint pins, pole pipes, multi span insertion joints, and T-clamp joints used in pipe houses were conducted. The strength of connections of a pipe connector made of metal wire was adequate but it had a big difference according to loading direction. The collapse load of pipes connected with a joint pin was lower than that of single pipes. Also experimental results showed that pole pipes for use in a part of frame buried under the ground were safe, and the strength of multi span insertion joints should be increased. The resistant moment of T-clamp was about 13.7% of a single pipe.

  • PDF

A Stress Analysis on the Split-sleeve of Quick Pipe Coupling (파이프 신속결합장치 틈-슬리브에 미치는 응력분포 연구)

  • Pyo, Jin-Soo;Kang, Jin-Woo;Choi, Kwang-Suk;Kim, Youn-Jea
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.502-505
    • /
    • 2008
  • Due to continuous difficulty of human power supply, it is necessary to develop an equipment which is good to saving cost and time at a construction site. A quick pipe coupling method is the kind of mechanical joint system using split-sleeve and sealing-pad at pipe groove without welding. In hence, it provides restrained pipe joint which is simple, safe, and dependable without environmental pollutions. It is more useful scheme than the other ones. The purpose of this study is to find out the main design factors and the optimum shape of split-sleeve. The stress analyses were carried out under various shapes of pipe groove configuration, materials and internal pressures with a commercial software, ANSYS workbench which uses FEM(finite element method). Results are graphically depicted with various parameters.

  • PDF