• 제목/요약/키워드: Pipe Fracture Test

검색결과 62건 처리시간 0.025초

실내모형시험을 통한 상대밀도가 다양한 사질토 지반에서의 하수도관 파손에 따른 지표침하의 영향범위에 관한 연구 (A Study for Influence Range of Ground Surface due to Sewer Fracture in Various Relative Density of Sand by Laboratory Model Test)

  • 오동욱;안호연;이용주
    • 한국지반공학회논문집
    • /
    • 제32권2호
    • /
    • pp.19-30
    • /
    • 2016
  • 도심지 지반함몰 현상의 대부분이 노후된 하수관에 의해 발생한다는 것은 이미 잘 알려진 사실이다. 따라서 관 파손의 위치와 주변 지반의 상대밀도가 지반의 거동에 미치는 영향을 알아보기 위해 실내모형시험을 수행하였다. 관 파손은 관 둘레에 대해 20% 파손된 것으로 가정하여 관 상부에 파손이 발생한 경우와 하부에 발생한 경우로 고려하였다. 느슨한 지반과 조밀한 지반을 상대밀도 30%, 70%로 조성하여 관 파손의 위치에 따른 지반 거동을 측정하였을 뿐만 아니라, 유한요소해석을 이용하여 실내모형시험 결과와 비교 분석하였다. 관 하부가 파손되어 누수가 발생되는 것이 상부가 파손되는 것보다 더 큰 지반 거동을 유발하는 것으로 나타났을 뿐만 아니라, 느슨한 지반에서 더 큰 지표침하량이 발생하는 것을 알 수 있었다.

참조응력개념을 이용한 국부감육배관 평가법 개발 (Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept)

  • 임환;심도준;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1200-1209
    • /
    • 2003
  • In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints.

개량 강관네일링 공법을 이용한 사면 보강사례 연구 (A Case Study on the Slope Reinforcement by Improved Steel Pipe Nailing)

  • 최동남;임희대;송영수;이규환
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.54-60
    • /
    • 2007
  • This paper describes typical design and construction practice for in-situ ground reinforcement technique using improved steel pipe pressure grouting. A case history is presented to illustrate the benefit gained by application of the technique. This technique was applied to cut slopes developed in the construction of auxiliary spillway of 00 dam. Applicable conditions, method of survey, slope stability analysis and construction are given in this parer. As for the construction method, a procedure is given and the main points are the control of construction work. As a result of the pull-out test, it is shown that seel pipe nailing is particularly useful for stabilizing rock slope.

Mechanical Strength Evaluation of A53B Carbon Steel Subjected to High Temperature Hydrogen Attack

  • Kim, Maan-Won;Lee, Joon-Won;Yoon, Kee-Bong;Park, Jai-Hak
    • International Journal of Safety
    • /
    • 제6권2호
    • /
    • pp.1-7
    • /
    • 2007
  • In this study mechanical strength of A53B carbon steel was analyzed using several types of test specimens directly machined from oil recycling pipe experienced a failure due to hydrogen attack in chemical plants. High temperature hydrogen attack (HTHA) is the damage process of grain boundary facets due to a chemical reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow on grain boundaries forming intergranular micro cracks. Microscopic optical examination, tensile test, Charpy impact test, hardness measurement, and small punch (SP) test were performed. Carbon content of the hydrogen attacked specimens was dramatically reduced compared with that of standard specification of A53B. Traces of decarburization and micro-cracks were observed by optical and scanning electron microscopy. Charpy impact energy in hydrogen attacked part of the pipe exhibited very low values due to the decarburization and micro fissure formation by HTHA, on the other hand, data tested from the sound part of the pipe showed high and scattered impact energy. Maximum reaction forces and ductility in SP test were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Finite element analyses for SP test were performed to estimate tensile properties for untested part of the pipe in tensile test. And fracture toughness was calculated using an equivalent strain concept with SP test and finite element analysis results.

가속도계를 이용한 배관 감육 감시 방법 (Monitoring Method for Pipe Thinning using Accelerometers)

  • 최영철;박진호;윤두병;손창호;황일순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.156-162
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time-frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

  • PDF

용접잔류응력을 고려한 상수도 강관의 피로특성 평가 (Fatigue Characteristic Evaluation in Water Pipe Welds Considering of Welding Residual Stress)

  • 최정훈;구재민;석창성;송원근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.7-10
    • /
    • 2007
  • In case of large steel water pipe, it have been observed that its fracture mostly occurs due to the complicated outside fatigue load on the pipe in the underground. It is also well known that its damage and leakage happen mainly in a weld zone. In this study we evaluated the fatigue characteristics based on size effect and residual stress by comparing the test results on the standard specimen collected from real pipe with those on full scale pipe.

  • PDF

시간-주파수 기법을 이용한 배관 감육 감시 방법 (Monitoring Pipe Thinning Using Time-frequency Analysis)

  • 손창호;박진호;윤두병;정의필;최영철
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1224-1230
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time -frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

크랙을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack)

  • 손인수;안태수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.10-16
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked simply supported pipe conveying fluid is investigated. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode(modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Galerkin method. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This results of study will contribute to the safety test and a stability estimation of the structures of a cracked pipe conveying fluid.

감육배관 손상시험 결과를 이용한 국부손상기준 검증 (Validation of a Local Failure Criteria Using the Results of Wall-Thinned Pipe Failure Tests)

  • 김진원;이성호;박치용
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1393-1400
    • /
    • 2009
  • The objective of this study is to validate local failure criteria, which were proposed based on the notched-bar specimen tests combining with finite element (FE) simulations, using the results of real-scale pipe failure tests. This study conducted burst test using wall-thinned pipe specimens, which were made of 4 inch Sch.80 ASTM A106 Gr.B carbon steel pipe, under simple internal pressure at ambient temperature and performed associated FE simulations. Failure pressures were estimated by applying the failure criteria to the results of FE simulations and were compared with experimental failure pressures. It showed that the local stress based criterion, given as true ultimate tensile stress of material, accurately estimated the failure pressure of wall-thinned pipe specimens. However, the local strain based criterion, which is fracture strain of material as a function of stress tri-axiality, could not predict the failure pressure. It was confirmed that the local stress based criterion is reliably applicable to estimation of failure pressure of local wall-thinned piping components.

크랙을 가진 유체유동 파이프의 안정성 해석 (Stability Analysis of Pipe Conveying Fluid with Crack)

  • 안태수;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF