• Title/Summary/Keyword: Pipe Defects

Search Result 172, Processing Time 0.017 seconds

Leakage Detection Method in Water Pipe using Tree-based Boosting Algorithm (트리 기반 부스팅 알고리듬을 이용한 상수도관 누수 탐지 방법)

  • Jae-Heung Lee;Yunsung Oh;Junhyeok Min
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Losses in domestic water supply due to leaks are very large, such as fractures and defects in pipelines. Therefore, preventive measures to prevent water leakage are necessary. We propose the development of a leakage detection sensor utilizing vibration sensors and present an optimal leakage detection algorithm leveraging artificial intelligence. Vibrational sound data acquired from water pipelines undergo a preprocessing stage using FFT (Fast Fourier Transform), followed by leakage classification using an optimized tree-based boosting algorithm. Applying this method to approximately 260,000 experimental data points from various real-world scenarios resulted in a 97% accuracy, a 4% improvement over existing SVM(Support Vector Machine) methods. The processing speed also increased approximately 80 times, confirming its suitability for edge device applications.

Trend of Physical Modelling For Ground Subsidence And Study of Its Application (지반함몰 모형실험 연구동향 및 적용방안 고찰)

  • Jeong, Seong-Yun;Jeong, Yeong-Hoon;Kim, Dong Soo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, increasing cases of ground subsidence in the urban area has become social issue, and related bill has been passed. Ground subsidence occurs through complex combination of various factors, and numerical analysis of this problem is limited thereby. This is why verification of ground subsidence mechanism has been conducted through physical modelling. Previous researches has been focused on modelling ground subsidence caused by utility pipe defects, and there has been insufficient physical modelling study on ground subsidence caused by various reasons such as groundwater flow and excavation activity. Also, most previous physical modelling studies were performed in 1g condition, which cannot take the in-situ stress condition into the evaluation of the ground subsidence mechanism. Therefore, in this study, physical modelling techniques to simulate various conditions is discussed by studying the previous researches on the ground subsidence mechanism through physical modelling. Also, centrifuge modelling test is suggested in this study as the technique to perform more reliable evaluation of ground subsidence mechanism. Lastly, this study suggests to apply the techniques used in the evaluation of ground subsidence mechanism into Ground Stability Assessment.