• 제목/요약/키워드: Pinion

검색결과 177건 처리시간 0.02초

터보냉동 압축기 로터-베어링 시스템의 동특성 설계 (Rotordynamic Design of a Turbo-Chiller Compressor Rotor-Bearing System)

  • 이안성;이동환;최상규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.255-260
    • /
    • 1998
  • A detailed rotordynamic design analysis is performed with a turbo-chiller compressor rotor-bearing system. A pinion is machined into a compressor shaft and the pinion is driven by a bull gear to a rated speed of 14,600 rpm. Utilizing a finite element method each bearing loads are calculated considering various gear loadings as well as the rotor weight itself. A Partial bearing and a 3-Lobe bearing are designed as the compressor impeller out-board bearing and in-board bearing, respectively. Finally a complex rotordynamic analysis of the compressor rotor-bearing system is carried out to evaluate the system whirl natural frequencies, stabilities, and unbalance responses.

  • PDF

파워 스티어링 시스템의 수학적 모델에 관한 연구 (A Mathematical Model of a Power Steering System)

  • 장봉춘;이성철
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.39-47
    • /
    • 1997
  • The focus of this research is to set up and describe the mathematical derivation of an automobile power-assisted rack and pinion steering system dynamics. The mathematical model of the power steering system dynamics with a 5 DOF linear vehicle model will be used in the computer simulation and evaluated comparing with the experimental results. This model is flexible to accommodate different vehicles through simple parameter changes. The developed mathematical model will attempt to provide enhanced driver realism to a Systems Technology, Inc. driving SIMulator(STISIM).

  • PDF

핀 휠을 구비한 외륜형 선회베어링의 면압강도 (Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.

RGM 기반 롤러 트랙 기어 시스템 설계 (Roller Track Gear System Design based on Roller Gear Mechanism)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.194-198
    • /
    • 2014
  • In recent years, RGM(roller gear mechanism) systems, wherein one of the gears of a meshing gear pair is replaced with pins or rollers, have been reintroduced, which is a consequence of, and therefore a reflection of, the rapid advances made in manufacturing technology. Three RTG(roller track gear) systems for arbitrary path transportation (e.g., L-, O-, U-, and S-shaped tracks) were constructed using two out of three RGM systems, namely, the CRP(cam rack pinion), CRG(cam ring gear), and RPG(roller pinion gear) systems, and are introduced in this paper. We also present three ways to prevent the intersection and non-contact phenomena at the teeth in the vicinity of the conversion point between two joined RGM systems.

Sub-surface Stress Analysis on Spur Gear Teeth in the EHL Conditions

  • Koo, Young-Pil;Kim, Tae-Wan;Cho, Yong-Joo
    • KSTLE International Journal
    • /
    • 제5권1호
    • /
    • pp.14-22
    • /
    • 2004
  • The sub-surface stress field beneath the gear's contact surface caused by the surface pressure in lubricated condition is analyzed. To evaluate the influence of the clearances between a gear tooth and a pinion tooth on the stress field, two kinds of tooth profile models - conventional cylinder contact model and new numerical model - were chosen. Kinematics of the gear is taken into account to obtain the numerical model which is the accurate geometric clearances between a gear tooth and a pinion tooth. Transient elasto-hydrodynamic lubrication (EHL) analysis is performed to get the surface pressure. The sub-stress field is obtained by using Love's rectangular patch solution. The analysis results show that the sub-surface stress is quite dependent on both the surface pressures and the profile models. The maximum effective stress of the new model is lower than that of the old model. The depth where the maximum effective stress occurs in the new model is not proportional to the intensity of the external load.

랙 & 피니언 기어를 이용한 소형 자동차의 직접 조향 방식에 관한 연구 (Study on the Direct Steering System using Rack and Pinion for Ultra-Small Vehicles)

  • 김순호;강민철
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.127-134
    • /
    • 2002
  • This study present a direct steering system using rack and pinion for ultra-small vehicles. The traditional small vehicles for special use had the limitation of space by reason of short wheel tread. These vehicles has adopted a indirect steering system or a center arm system for steering. The disadvantages of these system were deterioration of gear efficiency and increase of parts. For direct-linkage to both knuckles, steering system is made up of out-side tie rods, tie-rod ends, and gear box. Thus, the proposed system has a minimum number of parts. The experimental results show a maximum efficiency at minimum steering angle and a minimum clearance circle. These effects were accomplished by adopting a Ackerman-Jantaud theory.

BRG 시스템의 접촉 피로수명 (Contact Fatigue Life for RRG System)

  • 남형철;김창현;권순만
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

자동차용 윈도우 모터를 이용한 보행로봇 구동부 설계 (The driving system design of walking robot which uses the automotive window motor)

  • 염광욱;함성훈;오세훈
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.137-141
    • /
    • 2011
  • Driving mechanism, the central part of a robot, was designed in this study. Power for the motive drive was acquired by directly connecting the motor shaft in worm shape of the low-end DC motor, car window motor, to a decelerator. The decelerator consists of a worm gear to receive power from the motor shaft, a pinion gear to be connected in line with the worm gear, and an output shaft to be engaged to the pinion gear. Motion driving is achieved by the power from the motor shaft with the designed gears, transferred to the deceleration mechanism and to the output gear.

EPS 각도센서용 토션 바의 압입공정의 휨과 회전현상 분석 (Analysis of Bending and Rotation Phenomenon of Torsion Bar During Press-fitting Process for EPS Angle Sensors)

  • 이형욱;이승호;전태호;정일기
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.376-383
    • /
    • 2023
  • The torsion bar, which is a steering torque sensor, is mounted between the steering pinion and the input shaft in the IPA(input pinion assembly). Accurate torque measurement is important to improve the sense of operation, and the straightness of the torsion bar can affect torque measurement. In this study, the amount of bending was measured and the exact shape was analyzed regarding the bending phenomenon in the press-fitting process for torsion bars. The effect of alignment error was analyzed through finite element forming analysis. Process data analysis was conducted for the double-end press fit model. If there is an alignment error of about 10% of the serration tooth height, the indentation load is reduced by about 10%. If there is an alignment error, the torsion bar is rotated.

북한산 산악철도 개발의 경제성 분석 연구 (Study on the Economic Analysis for Developing Bukhansan Mountain Train)

  • 이종성;송문석
    • 한국산학기술학회논문지
    • /
    • 제16권7호
    • /
    • pp.4969-4976
    • /
    • 2015
  • 우리나라는 국토의 약 2/3이상이 산악지형으로 이루어져 있으며 산악지역의 자연공원을 관광 자원화 하여 수혜를 원하는 사람들에게 접근성이 용이하도록 정책을 활성화할 필요가 있다. 이러한 여건을 감안하고 국토의 균형발전과 철도 인프라구축 정책원칙 우선 적용을 위한 일환으로 산악지역 중 가장 실효성과 경제성이 있을 것으로 예상되는 북한산에 대해 산악관광열차로서의 도입시 이용자 지불의사 수준에 관한 대안을 적용하여 산악철도에 대한 경제성 변화를 연구 하였다. 분석결과 LIM(선형유도모터) 과 랙&피니언 시스템의 편익비용비가 각각 0.73, 0.8로 나타났으며, 랙&피니언방식이 적용가능 한 대안으로, 향후 새로운 신 기술개발이 이루어지고, 노선내 터널을 일부시공 한다면 선형유도모터방식도 가능한 대안으로 검토 되었다.