• Title/Summary/Keyword: Pin-by-pin

Search Result 1,735, Processing Time 0.031 seconds

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

Design and Implementation of Smart Factory System based on Manufacturing Data for Cosmetic Industry (화장품 제조업을 위한 제조데이터 기반의 스마트팩토리 시스템의 설계 및 구현)

  • Oh, Sewon;Jeong, Jongpil;Park, Jungsoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.149-162
    • /
    • 2021
  • This paper established a new smart factory based on manufacturing data for an introductory company focusing on the personalized cosmetics manufacturing industry. We build on an example of a system that collects, manages, and analyzes documents and data that were previously managed by CGMP-based analog for data-driven use. To this end, we have established a system that can collect all data in real time at the production site by introducing artificial intelligence smart factory platform LINK5 MOS and POP system, collecting PLC data, and introducing monitoring system and pin board. It also aims to create a new business cluster space based on this project.

A Study on the Improvement of Personal Identity Proofing Service Using an Alternative Method for Resident Registration Number Based on Electronic Signature (전자서명 기반의 주민등록번호 대체수단을 사용한 본인확인서비스 개선 방안에 대한 연구)

  • Kim, Jong Bae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.453-462
    • /
    • 2021
  • As the status of public certificates expired due to the recent revision of the Electronic Signature Act, electronic signature-based public certificates were also lost in the means of replacing resident registration numbers(RRN). As a result, public certification institutions have recently been designated by the Korea Communications Commission as identity verification service providers through a review of the designation of personal identity proofing agency based on alternative means of RRN. However, unlike existing RRN replacements such as i-PIN, mobile phones, and credit cards, the personal identity proofing process for applicants for certificates is different from existing alternatives. The proposed method shows that it is possible to protect users' personal information and provide universal, reasonable, and safe identification services by applying improvements to electronic signature-based personal identity proofing services.

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

Implementation of a drone using the PID control of an 8-bit microcontroller (8bit 마이크로컨트롤러의 PID제어를 이용한 드론 구현)

  • Lee, Donghee;Moon, Sangook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.9
    • /
    • pp.81-90
    • /
    • 2016
  • Recently drones have become popular enough to be one of the hobby. The drone refers to an unmanned aerial vehicle which can fly and be steered by a radio wave without a pilot and it has a airplane or helicopter shape. The drone was first started to be used from military purpose, but its usage has been expanded to the private such as construction site, crop-dusting, field discovery, freight shipping and drones to prevent cheating. However the drone that we can see often in the market is expansive, hard to be repaired when it broken down and has a discomfort of the short flight time. In this paper, to solve an uncomfortable talk on the cheap 8-bits microcontrollers ATmega128 Using drone for implementation. Axes gyroscope and accelerometers mcu between posture an attitude control, communications through drone control, pid. Receiver input them into transmitter signals of movements to control drone c the programming was implemented in on the basis of language. drone using ATmega128 microcontroller is possible hovering, By utilizing a pin that are not required for control it can be used as a drone for a variety of uses.

Ultimate Behavior of Compression Flange Stiffened by Shear Stud on Double Composite Steel Box Girder (이중합성 강박스거더에서 전단연결재에 의해 보강된 압축플랜지의 극한거동에 관한 연구)

  • Lee, Doo Sung;Lee, Sung Chul;Suh, Suk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.457-463
    • /
    • 2008
  • The longitudinal stiffener performs its role to increase the local buckling strength by making simple support upon compression flange. In the recent researches, it is investigated that compression flange with point supports on certain arrangement reveals the same strength with longitudinal stiffeners. From this results, it is predictable that shear stud could perform the role of longitudinal stiffener if shear stud embedded in concrete satisfies the requirement to point-support under yield stress of the compression flange. In this study, the researches were performed to investigate the optimally required arrangement space of longitudinal point-support for which the shear stud replacing the longitudinal stiffeners and simultaneously determine the required numbers and space of shear stud for completely composite behavior between compression bottom flange and bottom concrete on the double composite girder system.

Phase Formation and Mechanical Property of YSZ-30 vol.% WC Composite Ceramics Fabricated by Hot Pressing (가압소결로 제조된 YSZ-30 vol.% WC 복합체 세라믹스의 상형성 거동과 기계적 특성)

  • Jin-Kwon Kim;Jae-Hyeong Choi;Nahm Sahn;Sung-Soo Ryu;Seongwon Kim
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.409-414
    • /
    • 2023
  • YSZ (Y2O3-stabilized zirconia)-based ceramics have excellent mechanical properties, such as high strength and wear resistance. In the application, YSZ is utilized in the bead mill, a fine-grinding process. YSZ-based parts, such as the rotor and pin, can be easily damaged by continuous application with high rpm in the bead mill process. In that case, adding WC particles improves the tribological and mechanical properties. YSZ-30 vol.% WC composite ceramics are manufactured via hot pressing under different pressures (10/30/60 MPa). The hot-pressed composite ceramics measure the physical properties, such as porosity and bulk density values. In addition, the phase formation of these composite ceramics is analyzed and discussed with those of physical properties. For the increased applied pressure of hot pressing, the tetragonality of YSZ and the crystallinity of WC are enhanced. The mechanical properties indicate an improved tendency with the increase in the applied pressure of hot pressing.

HVL Measurement of the Miniature X-Ray Tube Using Diode Detector (다이오드 검출기를 이용한 초소형 X선관(Miniature X-ray Tube)의 반가층 측정)

  • Kim, Ju-Hye;An, So-Hyeon;Oh, Yoon-Jin;Ji, Yoon-Seo;Huh, Jang-Yong;Kang, Chang-Mu;Suh, Hyunsuk;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.279-284
    • /
    • 2012
  • The X ray has been widely used in both diagnosis and treatment. Recently, a miniature X ray tube has been developed for radiotherapy. The miniature X ray tube is directly inserted into the body irradiated, so that X rays can be guided to a target at various incident angles according to collimator geometry and, thus, minimize patient dose. If such features of the miniature X ray tube can be applied to development of X ray imaging as well as radiation treatment, it is expected to open a new chapter in the field of diagnostic X ray. However, the miniature X ray tube requires an added filter and a collimator for diagnostic purpose because it was designed for radiotherapy. Therefore, a collimator and an added filter were manufactured for the miniature X ray tube, and mounted on. In this study, we evaluated beam characteristics of the miniature X ray tube for diagnostic X ray system and accuracy of measuring the HVL. We used the Si PIN Photodiode type Piranha detector (Piranha, RTI, Sweden) and estimated the HVL of the miniature X ray tube with added filter and without added filter. Through an another measurement using Al filter, we evaluated the accuracy of the HVL obtained from a direct measurement using the automatic HVL calculation function provided by the Piranha detector. As a result, the HVL of the miniature X ray tube was increased around 1.9 times with the added filter mounted on. So we demonstrated that the HVL was suitable for diagnostic X ray system. In the case that the added filter was not mounted on, the HVL obtained from use of the automatic HVL calculation function provided by Piranha detector was 50% higher than the HVL estimated using Al filter. Therefore, the HVL automatic measurement from the Piranha detector cannot be used for the HVL calculation. However, when the added filter was mounted on, the HVL automatic measurement value using the Piranha detector was approximately 15% lower than the estimated value using Al filter. It implies that the HVL automatic measurement can be used to estimate the HVL of the miniature X ray tube with the added filter mounted on without a more complicated measurement method using Al filter. It is expected that the automatic HVL measurement provided by the Piranha detector enables to make kV-X ray characterization easier.

Design and Implementation of IoT based Low cost, Effective Learning Mechanism for Empowering STEM Education in India

  • Simmi Chawla;Parul Tomar;Sapna Gambhir
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.163-169
    • /
    • 2024
  • India is a developing nation and has come with comprehensive way in modernizing its reducing poverty, economy and rising living standards for an outsized fragment of its residents. The STEM (Science, Technology, Engineering, and Mathematics) education plays an important role in it. STEM is an educational curriculum that emphasis on the subjects of "science, technology, engineering, and mathematics". In traditional education scenario, these subjects are taught independently, but according to the educational philosophy of STEM that teaches these subjects together in project-based lessons. STEM helps the students in his holistic development. Youth unemployment is the biggest concern due to lack of adequate skills. There is a huge skill gap behind jobless engineers and the question arises how we can prepare engineers for a better tomorrow? Now a day's Industry 4.0 is a new fourth industrial revolution which is an intelligent networking of machines and processes for industry through ICT. It is based upon the usage of cyber-physical systems and Internet of Things (IoT). Industrial revolution does not influence only production but also educational system as well. IoT in academics is a new revolution to the Internet technology, which introduced "Smartness" in the entire IT infrastructure. To improve socio-economic status of the India students must equipped with 21st century digital skills and Universities, colleges must provide individual learning kits to their students which can help them in enhancing their productivity and learning outcomes. The major goal of this paper is to present a low cost, effective learning mechanism for STEM implementation using Raspberry Pi 3+ model (Single board computer) and Node Red open source visual programming tool which is developed by IBM for wiring hardware devices together. These tools are broadly used to provide hands on experience on IoT fundamentals during teaching and learning. This paper elaborates the appropriateness and the practicality of these concepts via an example by implementing a user interface (UI) and Dashboard in Node-RED where dashboard palette is used for demonstration with switch, slider, gauge and Raspberry pi palette is used to connect with GPIO pins present on Raspberry pi board. An LED light is connected with a GPIO pin as an output pin. In this experiment, it is shown that the Node-Red dashboard is accessing on Raspberry pi and via Smartphone as well. In the final step results are shown in an elaborate manner. Conversely, inadequate Programming skills in students are the biggest challenge because without good programming skills there would be no pioneers in engineering, robotics and other areas. Coding plays an important role to increase the level of knowledge on a wide scale and to encourage the interest of students in coding. Today Python language which is Open source and most demanding languages in the industry in order to know data science and algorithms, understanding computer science would not be possible without science, technology, engineering and math. In this paper a small experiment is also done with an LED light via writing source code in python. These tiny experiments are really helpful to encourage the students and give play way to learn these advance technologies. The cost estimation is presented in tabular form for per learning kit provided to the students for Hands on experiments. Some Popular In addition, some Open source tools for experimenting with IoT Technology are described. Students can enrich their knowledge by doing lots of experiments with these freely available software's and this low cost hardware in labs or learning kits provided to them.

The Relative Centrifugation Force Permits Visualization of the Germinal Vesicle in Pig Oocytes

  • Hsieh, Chang-Hsing;Lee, Stone;Jaw, Si-Ning;Tseng, Jung-Kai;Tang, Pin-Chi;Chang, Lan-Hwa;Ju, Jyh-Cherng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1227-1231
    • /
    • 2004
  • Pig oocytes contain high levels of lipids in the ooplasm, which reduces the visibility of the germinal vesicle (GV) under microscopic examination. Therefore, the purposes of this study were to investigate the effects of relative centrifugation force (RCF) on the visibility and maturation rates of the GV stage oocytes after centrifugation. In Experiment 1, cumulus-oocyte-complexes (COCs) were collected from slaughterhouse ovaries and randomly allocated to different RCFs (3,000 rpm: 970 g; 6,000 rpm: 3,900 g; or 10,000 rpm: 10,840 g) for 10 or 20 min. Percentages of visible GV were 76-79% in the oocytes centrifuged with 10,000 rpm, which were significantly higher (p<0.01) than those with 3,000 and 6,000 rpm. No significant differences in GV visibility were observed among oocytes with different lengths of centrifugation (p<0.05) regardless of the RCFs. In esperiment 2, the maturation rate of the oocyte was found significantly lower in the 20 min than in the 10 min group received 10,840 g of RCF (30 vs. 75%, p<0.05). In conclusion, the GV of porcine oocytes can be clearly visible by centrifugation at 10,840 g for 10 min without compromising their subsequent maturation rates and a longer centrifugation time (20 min) had no beneficial influence on the visibility of GV stage pig oocytes.