• Title/Summary/Keyword: Pin on disk

Search Result 247, Processing Time 0.022 seconds

Characteristics of Friction Noise with Respect to Friction Curve (마찰 곡선에 따른 마찰 소음 특성)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • The characteristics of friction noise due to the friction-velocity curve is experimentally investigated through the pin-on-disk setup. The rotation speed of the disk is controlled in order to produce the sliding speed variation. Then, the friction coefficient and the corresponding friction noise are simultaneously measured with respect to the sliding speed between the steel disk and aluminum pin. The experimental results show that the negative friction-velocity slope is essential in generating friction noise.

Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring (디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성)

  • Jang, Jeong-Hwan;Kim, Jung-Hoon;Kim, Chang-Hee;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

An Experimental Comparison Study on Performance Evaluation for the Hydraulic Pin-on-disk Type Tribotester (유압식 마찰시험기의 성능 평가에 관한 실험적 비교 연구)

  • Seo, Man-Sik;Koo, Young-Pil;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.194-199
    • /
    • 1999
  • For the purpose of improving accuracy in friction and wear test, a hydraulic pin-on-disk type tribotester was developed and its performance was evaluated experimentally. The performance estimation of the tribotesrer was accomplished by comparing both the consistency of the applied normal load and the robustness of the control against the mechanical disturbances with those of the pneumatic and the dead weight loading method respectively. The developed hydraulic pin-on-disk type tribotester showed the better reliability in the performance and the hydraulic loading method provided the more accurate friction coefficient.

  • PDF

Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF

Effects of Humidity and Sliding Speed on the Wear Properties of $Si_3N_4$ Ceramics (습도 및 미끄럼 속도에 따른 질화규소의 마찰 마모 특성에 관한 연구)

  • 이기현;김경웅
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.63-69
    • /
    • 1993
  • The wear properties of two types of $Si_3N_4$(silicon nitride) exposed to high and low humidity were examined experimentally for various sliding speed. Bearing steel was used as the disk material at pin-on-disk type sliding. Wear rates of pressureless sintered-plus-hot-isostatic pressed Si3N4 were slightly lower than those of pressureless sintered $Si_3N_4$. It was observed that adsorbed moisture and sliding speed markedly influenced the wear properties of $Si_3N_4$. The highest wear rate was obtained under the high humidity and low sliding speed condition. As the sliding speed was increased, wear rates were decreased and the humidity effect on the wear rates of $Si_3N_4$ was lowered. The result that the $Si_3N_4$ pin showed a high wear rate under the high humidity condition was explained by the property change due to the adsorbed moisture, plowing action by the hard particles of $Fe_2O_3$ from the disk, and the corrosion effect at $Si_3N_4$ surface. Increase in sliding speed was supposed to have reduced the humidity effect on wear rate of $Si_3N_4$ by raising the temperature of both the bearing steel disk and $Si_3N_4$ pin specimen.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryoo, Sung-Kuk;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

Tribological Characteristics of MoS$_2$ Coatings in High Vacuum (고진공하에서의 $MoS_2$ 코팅의 트라이볼로지적 특성)

  • 권오원;김석삼;이상로
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.409-414
    • /
    • 2000
  • The friction and wear behaviors of MoS$_2$ coatings were investigated by using a pin and disk type tester. The experiment was conducted by using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding velocities in the range of 22-66 ㎜/sec, normal loads varying from 9.8 N to 29.4 N, corresponding to maximum contact pressures of 1.18-2.83 GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

Tribological Characteristics of MoS$_2$Coatings in High Vacuum

  • Kwon, Oh Won;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.91-94
    • /
    • 2000
  • The friction and wear behavior of MoS$_2$coatings was investigated using a pin and disk type tester. The experiment was conducted with silicon nitride as the pin material and MoS$_2$-on-bearing steel as the disk material under different operating conditions that included linear sliding velocities within a range of 2266 mm/sec, normal loads varying from 9.829.4 N, corresponding to maximum contact pressures of 1.782.83 Gpa, and high vacuum, medium vacuum, and ambient air atmospheric conditions. The results showed a low friction coefficient far the coating in a high vacuum, plus the friction coefficient and wear volume increased with an increased normal load. Furthermore, under high load conditions, the friction coefficient and wear volume also increased with an increased sliding velocity.

  • PDF

Tribological Characteristics of $MoS_2$Coatings in High Vacuum (고진공하에서의 MoS$MoS_2$코팅의 트라이볼로지적 특성)

  • 권오원;채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.94-100
    • /
    • 1999
  • The friction and wear behavior of MoS$_2$Coatings were investigated using a pin and disk type tester. The experiment was conducted using silicon nitride as pin material and MoS$_2$-on-bearing steel as disk material under different operating conditions that include linear sliding speeds in the range of 22~66mm/sec, normal loads varying from 9.8~29.4N, corresponding to maximum contact pressure of 1.78~2.830GPa and atmospheric conditions of high vacuum, medium vacuum, ambient air. The results showed that low friction coefficient of the coating has been identified when running in high vacuum and that friction coefficient and wear volume increased with increasing normal load. Also at high load conditions, the friction coefficient and wear volume increased with increasing sliding velocity.

  • PDF