• Title/Summary/Keyword: Pilot plant

Search Result 713, Processing Time 0.027 seconds

Development of Pilot Plant for Distributed Intelligent Management System of Microgrids (멀티에이전트 시스템을 이용한 마이크로그리드 분산 지능형 관리시스템 파일럿 플랜트 개발)

  • Oh, Sang-Jin;Yoo, Cheol-Hee;Chung, Il-Yop;Lim, Jae-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.322-331
    • /
    • 2013
  • This paper describes the development of the pilot plant of distributed intelligent management system for a microgrid. For optimal control and management of microgrids, intelligent agents area applied to the microgrid management system. Each agent includes intelligent algorithms to make decisions on behalf of the corresponding microgrid entity such as distributed generators, local loads, and so on. To this end, each agent has its own resources to evaluate the system conditions by collecting local information and also communicating with other agents. This paper presents key features of the data communication and management of the developed pilot plant such as the construction of mesh network using local wireless communication techniques, the autonomous agent coordination schemes using plug-and-play functions of agents and contract net protocol (CNP) for decision-making. The performance of the pilot plant and developed algorithms are verified via real-time microgrid test bench based on hardware-in-the-loop simulation systems.

Test Run for the Production of Aluminum Hydroxide by Recycling of Waste Aluminum Dross (알루미늄 폐드로스로부터 수산화알루미늄 생산 시운전 결과)

  • Lee Hooin;Park Ryungkyu;Kim Joonsoo
    • Resources Recycling
    • /
    • v.13 no.2
    • /
    • pp.47-53
    • /
    • 2004
  • Waste aluminum dross is a major waste in the aluminum scrap smelters, and some metallic aluminum remains in the waste dross. In the previous study, waste aluminum dross was leached with sodium hydroxide solution to extract the remained aluminum into the solution, and aluminum hydroxide precipitate was recovered from the leached solution. A pilot plant was constructed and tested to demonstrate the developed technology. One thousand tons of waste aluminum dross could be processed, and about five hundred tons of aluminum hydroxide could be produced in the pilot plant. From the test run of the pilot plant, it was confirmed that the developed technology could be employed as a commercial scale and the produced aluminum hydroxide could be used for water treatment agent.

Growth and Succession of Protozoa Population in the Activated Sludge Plant. (하수처리장의 원생동물 천이)

  • 이찬형;문경숙;진익렬
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.158-165
    • /
    • 2004
  • This study concerns the succession process of protozoa populations in two activated sludge pilot plants. Protozoa populations with similar structures developed and succeeded each other in two plants. It was observed that initial sludge inoculum did not influence the protozoan composition but shorten the period of the plant stabilization. It seemed the protozoan in aeration tank was come from the influent. The composition of the influent sewage influenced the structure of protozoa in the pilot plants. The flagellates was very abundant during the initial starting phase. These rapidly decreased after growth peak. Then sarcodina, ciliates were increased in succession. In ciliates, free-swimming forms appeared at first and crawling forms and stalked forms were followed. After 36 days from the start, the sludge stabilization phase was characterized by a populations of ciliates dominated by stalked and crawling type and low value of effluent BOD was achieved.

[ $CO_2$ ] Recovery from LNG-fired Flue Gas Using a Multi-staged Pilot-scale Membrane Plant (파일럿규모의 다단계 막분리 공정을 통한 LNG 연소 배가스로부터 이산화탄소의 회수연구)

  • Kim, Jeong-Hoon;Choi, Seung-Hak;Kim, Beom-Sik;Lee, Soo-Bok;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.197-209
    • /
    • 2007
  • In this study, a multi-staged pilot-scale membrane plant was constructed and operated for the separation of $CO_2$ from LNG-fired boiler flue gas of 1,000 $Nm^3/day$. The target purity and recovery ratio of $CO_2$ required for the pilot plant were 99% and 90%, respectively. For this purpose, we previously developed the asymmetric polyethersulfone hollow fibers and evaluated the effects of operating pressure and feed concentration of $CO_2$ on separation performance[1,2]. The permeation data obtained were also analyzed in relation with the numerical simulation data using counter-current flow model[3,4]. Based on these results, we designed and prepared the demonstration plant consisting of dehumidification process and four-staged membrane process. The operation results using this plant were compared with the numerical simulation results on multi-staged membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery ratio of $CO_2$ in the final stage permeate stream were ranged from $95{\sim}99%$ and $70{\sim}95%$, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for $CO_2$ recovery from flue gas.

Design and Performance Test of SCR Pilot Plant($1,000Nm^{3}/hr$) ($1,000Nm^{3}/hr$급 SCR Pilot Plant의 설계 및 성능실험)

  • Kim, J.I.;Chang, I.G.;Seon, C.Y.;Kim, J.S.;Chon, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.979-984
    • /
    • 2001
  • As a preceding process for developing design technology and establishing operation technology, the design procedure of the SCR(Selective Catalytic Reduction) pilot plant that can handle $1,000Nm^{3}/hr$ of flue gas was reported in this paper. And we also considered several factors that might cause abnormality of the plant in the designing process. The plant was designed and fabricated to test the $DeNO_{x}$ performances in variable operating conditions in the range of $3,000{\sim}36,000hr^{-1}/hr$ in space velocities, $1.67{\sim}6\;m/s$ in linear velocities, $200{\sim}500^{\circ}C$ temperatures, $300{\sim}1,000Nm^{3}/hr$ flow rates, and $0{\sim}1.4:1\;NH_{3}/NO$ ratios. In order to maintain the flow uniformity, the guide vanes and flow straightener were designed and constructed in the plant. The SCR pilot plant can be operated by the automatic control system, which enable to obtain performance data in real time and to set up the operating technology. The catalyst reactor consists of 4 catalyst layers and surface area of each layer can be adjusted to be of small size. Arrangement of catalysts per layer is $3{\times}6$ with the catalyst dimensions of $150{\times}150{\times}500mm(L{\times}W{\times}H)$.

  • PDF

Manufacturing of Lightweight Aggregate using Sewage Sludge by a Pilot Plant(10ton/day) (Pilot Plant(10톤/일)를 이용한 하수슬러지 인공경량골재의 제조)

  • Mun, Kyoung-Ju;Lee, Hwa-Young;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.117-120
    • /
    • 2006
  • The purpose of this study is to efficiently treat the sewage sludge discharged from sewage treatment plants and evaluate the feasibility of the manufacture of lightweight aggregates(LWA) using a large quantity of sewage sludge. Sintered lightweight aggregate from sewage sludge is experimentally manufactured with various mass ratios of clay to sewage sludge by a pilot plant, and is tested for density, water absorption and crushing value. Their physical properties are compared to those of a commercial sintered lightweight aggregate. As a result, an experimentally manufactured lightweight aggregate is similar or superior in physical properties to the commercial lightweight aggregate. The manufactured lightweight aggregate could be used for structural concrete and non-structural concrete.

  • PDF

Probing Starch Biosynthesis Enzyme Isoforms by Visualization of Conserved Secondary Structure Patterns

  • Vorapreeda, Tayvich;Kittichotirat, Weerayuth;Meechai, Asawin;Bhumiratana, Sakarindr;Cheevadhanarak, Supapon
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.215-220
    • /
    • 2005
  • Generally, enzymes in the starch biosynthesis pathway exist in many isoforms, contributing to the difficulties in the dissection of their specific roles in controlling starch properties. In this study, we present an algorithm as an alternative method to classify isoforms of starch biosynthesis enzymes based on their conserved secondary structures. Analysis of the predicted secondary structure of plant soluble starch synthase I (SSI) and soluble starch synthase II (SSII) demonstrates that these two classes of isoform can be reclassified into three subsets, SS-A, SS-B and SS-C, according to the differences in the secondary structure of the protein at C-terminus. SS-A reveals unique structural features that are conserved only in cereal plants, while those of SS-B are found in all plants and SS-C is restricted to barley. These findings enable us to increase the accuracy in the estimation of evolutionary distance between isoforms of starch synthases. Moreover, it facilitates the elucidation of correlations between the functions of each enzyme isoforms and the properties of starches. Our secondary structure analysis tool can be applicable to study the functions of other plant enzyme isoforms of economical importance.

  • PDF

Process Development of Pyrolysis Liquefaction for Waste Plastics (폐플라스틱의 열분해 유화기술 개발)

  • Nho Nam-Sun;Shin Dae-Hyun;Park Sou-Won;Lee Kyong-Hwan;Kim Kwang-Ho;Jeon Sang-Goo;Cho Bong-Gyu
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.118-125
    • /
    • 2006
  • The target of this work was the process development of demonstration plant to produce the high quality alternative fuel oil by the pyrolysis of mixed plastic waste. In the first step of research, the bench-scale units of 70 t/y and the pilot plant of 360 t/y had been developed. Main research contents in this step were the process performance test of pilot plant of 360 ton/year and the development of demonstration plant of 3,000 t/y, which was constructed at Korea R & D Company in Kimjae City. The process performance of pilot plant of 360 t/y showed about 80% yield of liquid product, which was obtained by both light gas oil(LGO) and heavy gas oil(HGO), The boiling point range distribution of LO product that was mainly consisting of olefin components in PONA group appeared at between that of commercial gasoline and kerosene. On the other hand, HO product was mainly paraffin and olefin components and also appeared at upper temperature distribution range than commercial diesel. Gas product showed a high fraction of $C_3\;and\;C_4$ product like LPG composition, but also a high fraction of $CO_2$ and CO by probably a little leak of process.

  • PDF

Study of MF membrane as pretreatment option using various backwash process from wastewater reuse pilot plant (전처리 MF의 다양한 역세 공정을 적용한 하수재이용 파일럿 플랜트 연구)

  • Park, Kwang-Duck;Park, Chansoo;Lee, Chang-Kyu;Kim, Jong-Oh;Choi, June-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.335-341
    • /
    • 2016
  • Various studies have forwarded an outstanding wastewater effluent treatment systems toward securing sustainable supply of water sources. In this paper, a broad overview of the performance of MF membrane as pretreatment option for wastewater reuse will be presented based on the literature survey and experiments conducted over the wastewater reuse pilot plant. The pilot plant was operated with a continuous data acquisition for about 300days under various chemical enhanced backwash (CEB) system with subsequent treated water quality analysis. Accordingly, assessment of the effluent revealed that the pretreated water is suitable enough to be used as an input for Reverse Osmosis (RO) unit and significant effect of CEB and concentration of NaOCl is also conceived from the analysis. Moreover, it's also observed that the application of various CEB condition over long operational hours induced a constant declination of overall performance of MF membrane.

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.