• Title/Summary/Keyword: Piling Vibration

Search Result 28, Processing Time 0.022 seconds

Design of Spindle Motor-chuck System for Ultra High Resolution (나노급 정밀 구동을 위한 스핀들 모터-척 시스템 설계)

  • Kim, Kyung-Ho;Kim, Ha-Yong;Shin, Bu-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • The STW(servo track writing) system which is the process of writing servo signals on disks before assembling in drives uses the spindle motor-chuck mechanism to realize low cost because the spindle motor-chuck mechanism has merit which can simultaneously write multi-disk by piling up disks in hub. Therefore, when the spindle motor-chuck mechanism of horizontal type operates in high rotation speed it is necessary to reduce the effect of RRO(repeatable run-out) and NRRO(non-repeatable run-out) to achieve the high precision accuracy of nano-meter level during the STW process. In this paper, we analyzed that the slip in assembly surfaces can be caused by the mechanical tolerance and clamping force in hub-chuck mechanism and can affect NRRO performance. We designed springs for centering and clamping considering centrifugal force by the rotation speed and assembly condition. The experimental result showed NRRO performance improves about 30 % than case of weak clamping force. The result shows that the optimal design of the spindle motor-chuck mechanism can effectively reduce the effect of NRRO and RRO in STW process.

A Study on the Characteristics of Propagation and Attenuation of Piling Noise by SIP Method with Casing (Casing 부착 SIP공법에 의해 발생하는 항타소음의 전달 및 감쇠특성에 관한 연구)

  • 이병윤;윤해동;조원희;김재수
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.899-905
    • /
    • 1999
  • Construction equipment noise has caused much annoyance for a number of dwellers in nearby construction field and has become a very serious issure in our living environment. Therefore, in our country, a practical solution and a better method of reducing construction equipment noise are highly required in construction field. Practical solutions for the construction equipment noise, however, are very difficult because of the poorness of basic data and insufficiency of the existing research. Especially, in order to establish the sound insulation plan about pilling works noise with high sound pressure level and impactive, a real situation of sound characteristics about the noise of pilling works in foundation work demands more detail investigation. In this point, this study attempts to survey the characteristics of attenuation and propagation of construction equipment noise in pilling work using SIP(soil-cement injected precast pile) method with casing. And this study intends to get the basic data for establishment of a standard about construction noise.

  • PDF

Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete (인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 임한욱;정동호;이상은
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF

Measurement and Control of Ground Vibrations due to Precast Concrete Pile-driving by Diesel Hammer (디젤해머에 의한 콘크리트말뚝 항타시(抗打時) 발생(發生)되는 지반진동(地盤振動)의 측정(測定) 및 영향평가(影響評價))

  • Park, Yean Soo;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • This Paper measures and analyzes ground vibrations induced during precast concrete pile-driving using diesel hammer at radii varying from 9m to 30m to evaluate effects of such vibrations associated with deep foundation piling operations near the residential of commercial areas. From this study, characteristics for attenuation and frequency of the vibrations casued by pile-driving are established and the empirical equation for predicting peak velocity and acceleration levels are obtained. This equation can be used to predict the peak vibration levels and select the appropriate hammers for future projects where similar soil conditions to this test site are encountered.

  • PDF

Development of New Micropiling Technique and Field Installation (신개념 마이크로파일 개발 및 현장시험시공)

  • Choi, Chang-Ho;Goo, Jeong-Min;Lee, Jung-Hoon;Cho, Sam-Deok;Jeong, Jae-Hyeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.571-578
    • /
    • 2009
  • Recently, micropiling techniques are increasingly applied in foundation rehabilitation/underpinning and seismic retrofitting projects where working space provides the limited access for conventional piling methods. Micropiling techniques provide environmental-friendly methods for minimizing disturbance to adjacent structures, ground, and the environment. Its installation is possible in restrictive area and general ground conditions. The cardinal features that the installation procedures cause minimal vibration and noise and require very low ceiling height make the micropiling methods to be commonly used for underpin existing structures. In the design point of view, the current practice obligates the bearing capacity of micropile to be obtained from skin friction of only rock-socketing area, in which it implies the frictional resistance of upper soil layer is ignored in the design process. In this paper, a new micropiling method and its verification studies via field installation are presented. The new method provides a specific way to grout bore-hole to increase frictional resistance between surrounding soil and pile-structure and it allows to consider the skin friction of micropiles for upper soil layer during design process.

  • PDF

Strength and Friction Behavior of Cement paste poured in the Bored Pile (매입말뚝의 시멘트풀 강도 및 마찰거동에 관한 연구)

  • Park, Jong-Bae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.31-39
    • /
    • 2004
  • The bored pile is widely used as a low noise and vibration piling method in Korea. However, there is design tendency to minimize the friction capacity of the bored pile because of uncertainty and the quality control specification is not set up. This research analysed the strength characteristics of cement paste after the uniaxial compression test with various condition. Test results show that the compressive strength of cement paste with w/c=0.83 was up to $156.0kgf/cm^2$, and the lower w/c ratio and the longer age, the strength of cement paste increased. Also the higher soil mixing ratio, the strength of soil cement decreased, and too high soil mixing ratio caused the malfuction of soil cement. Also this research analysed the 188 dynamic pile test results which were performed before and after hardening of cement paste. Analysis result showed that the average ultimate unit friction capacity was $9.1tf/m^2$ and this result surpassed the common design criteria of the bored pile.

  • PDF

Estimation of Bearing Capacity of SIP Pile Installed by Improved Criteria (개선된 기준으로 시공된 SIP 말뚝의 지지력 평가에 관한 연구)

  • Park, Jong-Bae;Kim, Jung-Soo;Lim, Hae-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.5-15
    • /
    • 2004
  • SIP has been widely used as a low noise and vibration piling method in Korea. But the quality control of SIP was not properly settled down and field workers did not fully understand the principle of SIP method. So not a less troubles were raised at construction site and bearing capacity was not fully mobilized. To settle these problems, Korea National Housing Corporation amended the construction and load test criteria of SIP in 2002. After load tests on the SIPs installed in field according to the new criteria, we found that the bearing capacity in field vs the design load ratio increased and bearing characteristics was enhanced than that installed by the former criteria. To consider the enhanced bearing characteristics in the pile design and determine the adequate design criteria, this paper analyzed the accuracy of design criterion which were commonly used in Korea comparing with the load test results. Analysis result shows that Meyerhof criteria(1976) properly simulates the bearing capacity of SIP installed by the new construction and load test criteria.

  • PDF

Analysis Method Considering the Ground Reinforcement Effect of Micropile by Field Loading Tests (재하시험을 통한 소구경말뚝의 지반보강효과를 고려한 해석법)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Compared to standard piling methods, micropile construction can be used in downtown areas since it generates less vibration and noise. Since it only causes less soil disturbance, it is commonly used as reinforcement to existing structures. In this study, a field wherein the bearing capacity and settlement of soil can not support the weight of the superstructure was selected and micropiles were implemented instead of ordinary piles. The deformation modulus of the micropile reinforced ground was determined and was directly reflected in the design. Loading testing was used to check whether or not the allowable bearing capacity satisfies the condition of the designed bearing capacity. The computed deformation modulus based from the test was used in the numerical analysis of soil to investigate the stability of the foundation and analysis method. And a method for controlling the bearing capacity and settlement was recommended.