• Title/Summary/Keyword: Pile capacity degradation

Search Result 11, Processing Time 0.025 seconds

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

Degradation in Intimate Bearing Capacity of Open -ended Pile During Simulated Horizontal Earthquake Shaking (유사화된 지진 진동에 의한 개단 말뚝의 지지력 저감)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.75-86
    • /
    • 1995
  • After open -ended model pipe pile, which was composed of inner tube and outer tube was driven by different installation methods, degradation in open -ended pipe pile capacity was studied during simulated horizontal seismic shaking, which was modeled by records of actual earthquake. Drgradation in ultimate capacity of open -ended pipe pile during simulated earthquake was about 20% in impact pile and was approached up to about 40% in vibratal pile. Most of degradation in ultimate pile capacity was occured in the outer shaft surface and degradations in outer skin friction, toe resistance of steel, and plugging force were about 80%, 10%, 10%, respectively. out of ultimate pile capacity. It appeared that this trend did not depend upon the different installation methods of pile.

  • PDF

Quasi-static test of the precast-concrete pile foundation for railway bridge construction

  • Zhang, Xiyin;Chen, Xingchong;Wang, Yi;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • Precast concrete elements in accelerated bridge construction (ABC) extends from superstructure to substructure, precast pile foundation has proven a benefit for regions with fragile ecological environment and adverse geological condition. There is still a lack of knowledge of the seismic behavior and performance of the precast pile foundation. In this study, a 1/8 scaled model of precast pile foundation with elevated cap is fabricated for quasi-static test. The failure mechanism and responses of the precast pile-soil interaction system are analyzed. It is shown that damage occurs primarily in precast pile-soil interaction system and the bridge pier keeps elastic state because of its relatively large cross-section designed for railways. The vulnerable part of the precast pile with elevated cap is located at the embedded section, but no plastic hinge forms along the pile depth under cyclic loading. Hysteretic curves show no significant strength degradation but obvious stiffness degradation throughout the loading process. The energy dissipation capacity of the precast pile-soil interaction system is discussed by using index of the equivalent viscous damping ratio. It can be found that the energy dissipation capacity decreases with the increase of loading displacement due to the unyielding pile reinforcements and potential pile uplift. It is expected to promote the use of precast pile foundation in accelerated bridge construction (ABC) of railways designed in seismic regions.

Cyclic behavior of connection between footing and concrete-infilled composite PHC pile

  • Bang, Jin-Wook;Hyun, Jung Hwan;Lee, Bang Yeon;Kim, Yun Yong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.741-754
    • /
    • 2014
  • The conventional PHC pile-footing connection is the weak part because the surface area and stiffness are sharply changed. The Composite PHC pile reinforced with the transverse shear reinforcing bars and infilled-concrete, hereafter ICP pile, has been developed for improving the flexural and shear performance. This paper investigates the cyclic behavior and performance of the ICP pile-footing connection. To investigate the behavior of the connection, one PHC and two ICP specimens were manufactured and then a series of cyclic loading tests were performed. From the test results, it was found that the ICP pile-footing connection exhibited higher cyclic behavior and connection performance compared to the conventional PHC pile-footing connection in terms of ductility ratio, stiffness degradation and energy dissipation capacity.

Reliability Analysis of Offshore Guyed Tower Against Anchor Pile Failures (해양 가이드-타워의 고정말뚝에 대한 신뢰도 해석)

  • 류정선;윤정방;강성후
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.117-127
    • /
    • 1991
  • For the reliability analysis of offshore guyed towers for large storm events, failure of an anchor pile of the guyline system is investigated. Two failure modes of the anchor pile due to the extreme and the cyclic wave loadings are considered. The probability of failure due to the extreme anchor load is evaluated based on the first excursion probability analysis. Degradation of the pile capacity due to cyclic loadings is evaluated by using empirical fatigue curves for a driven pile in clay. The numerical results indicate that the failure probability due to the cyclic loadings can be as large as the risk due to extreme loading, particularly for the cases with the low design safety level of the pile strength and the large uncertainty of the pile resistance.

  • PDF

Scaling Technique of Earthquake Record and its Application to Pile Load Test for Model Driven into Pressure Chamber (지진 기록의 확대(Scaling) 기법과 압력토오 말뚝모형실험에의 적용)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-32
    • /
    • 1996
  • Based on Trifuilac's empirical model to transform earthquake acceleration time history in the time domain into Fourier amplitude spectrum in the frequency domail an earthquake scaling technique for simulating the earthquake record of certain magnitude as the required magnitude earthquake was suggested. Also, using the earthquake record of magni dude(M) 5.8, the simulated earthquake of magnitude(M) 8.0 was established and its application to dynamic testing system was proposed. The earthquake scaling technique could be considered by several terms : earthquake magnitude(M), earthquake intensity(MMI), epicentral distance, recording site conditions, component direction and confidence level required by the analysis. Albo, it had an application to the various earthquake records. The simulated earthquake in this study was established by two orthogonal horizontal components of earthquake acceleration-time history. The simulated earthquake shaking could be applied to the dynamic pile load test for the model tension pile and the model compressive open -ended piles driven into the pressure chamber. In the static pile load test, behavior of two piles was very different and after model tension pile experienced 2 or 3 successive slips of the pile relative to the soil, it was failed completely. During the simulated earthquake shaking, dynamic behavior and pile capacity degradation of two piles were very different.

  • PDF

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

Review on Spent Nuclear Fuel Performance and Degradation Mechanisms under Long-term Dry Storage (사용후핵연료의 장기 건식 건전성 성능과 주요 열화 기구에 관한 고찰)

  • Kim, Juseong;Kook, Donghak;Sim, Jeehyung;Kim, Yongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.333-349
    • /
    • 2013
  • As the capacity of spent nuclear fuel storage pool at reactor sites becomes saturated in ten years, long term dry storage strategy has been recently discussed as an alternative option in Korea. In this study, we reviewed safety-criteria-related research results on spent nuclear fuel performance and integrity under long-term dry storage and proposed the direction and the scope of future domestic research and development. Creep and hydride effect in relation to the embrittlement are known to be the major degradation mechanisms of the spent fuels during the long term dry storage. However, recent research results showed that hydride reorientation and hydride embrittlement are one of the most critical factors to the spent fuel integrity. Accordingly safety criteria of US and Japan for the storage system are basically founded on those mechanisms. However, in Korea, not only in-pile but out-of-pile experimental data have not been generated to understand fuel cladding degradation and to determine the criteria to ensure the safety. In addition, the transient behavior of the spent fuel during transportation also needs to be thoroughly examined. Therefore, various experimental research and development will be required to establish our own safety criteria for future long-term dry storage of domestic spent fuels.

Experimental and modelling study of clay stabilized with bottom ash-eco sand slurry pile

  • Subramanian, Sathyapriya;Arumairaj, P.D.;Subramani, T.
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.523-539
    • /
    • 2017
  • Clay soils are typical for their swelling properties upon absorption of water during rains and development of cracks during summer time owing to the profile desorption of water through the inter-connected soil pores by water vapour diffusion leading to evaporation. This type of unstable soil phenomenon by and large poses a serious threat to the strength and stability of structures when rest on such type of soils. Even as lime and cement are extensively used for stabilization of clay soils it has become imperative to find relatively cheaper alternative materials to bring out the desired properties within the clay soil domain. In the present era of catastrophic environmental degradation as a side effect to modernized manufacturing processes, industrialization and urbanization the creative idea would be treating the waste products in a beneficial way for reuse and recycling. Bottom ash and ecosand are construed as a waste product from cement industry. An optimal combination of bottom ash-eco sand can be thought of as a viable alternative to stabilize the clay soils by means of an effective dispersion dynamics associated with the inter connected network of pore spaces. A CATIA model was created and imported to ANSYS Fluent to study the dispersion dynamics. Ion migration from the bottom ash-ecosand pile was facilitated through natural formation of cracks in clay soil subjected to atmospheric conditions. Treated samples collected at different curing days from inner and outer zones at different depths were tested for, plasticity index, Unconfined Compressive Strength (UCS), free swell index, water content, Cation Exchange Capacity (CEC), pH and ion concentration to show the effectiveness of the method in improving the clay soil.