• Title/Summary/Keyword: Pile bearing capacity

Search Result 532, Processing Time 0.023 seconds

Bearing Capacity Evaluation of the Drilled Shaft Using Small Scale Model Test (축소모형말뚝을 이용한 현장타설말뚝의 지지력 평가)

  • 조천환;김홍묵;김웅규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.117-126
    • /
    • 2004
  • Recently, the top & down method with drilled shafts as a foundation of high rise building is often adopted for the purpose of construction period reduction and construction cost effectiveness. It is common to omit the loading test as a quality assurance on account of the high capacity of drilled shafts for the top & down method. It seems that the capacity of drilled shaft in recent top & down method is beyond that of conventional loading test method. However, the quality assurance for the drilled shaft as foundation of high rise building becomes much more important since the drilled shaft should bear much higher working load. A small scale test pile can be an alternative as a quality assurance for the drilled shaft with hish capacities. Through a case study, this paper gives an idea for solving the limitation of the conventional loading test method for the quality assurance of drilled shaft with high capacities. In particular, this paper analyzed the scale effect for a small drilled shaft installed into bedrock, which could be used for an alternative.

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Application of Copper Slag as a Substitute for Sand in Sand Compaction Pile (모래다짐말뚝의 모래대체재로서 동슬래그의 활용)

  • 천병식;정헌철
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.195-207
    • /
    • 2002
  • The domestic, quantity of copper slag as a by-product at copper smelting process reaches 700,000 tons annually while its application is limited. Therefore, the secure disposal plan of copper slag is urgently required. For this reason, in this study, copper slag was used as a substitute for sand in Sand Compaction Pile that is one of the improvement methods of soft ground because the particle size distribution of copper slag ranges from 0.15mm to 5m(coarse state) and it maintains stable glassy state environmentally. The geotechnical characteristics of copper slag were evaluated through laboratory model tests and the field application of copper slag was compared with generally used sand by pilot tests. From these experimental results, copper slag's material characteristics, bearing capacity, settlement reduction and improvement effects of surrounding ground were found to be superior to generally used sand. The copper slag can be used as a substitute far sand in the Sand Compaction Pile method and as recycling material of industrial by-product with high econonical and environmental value when natural resources are being exhausted.

Three Dimensional Numerical Analysis of Piled Raft on Soft Clay (연약지반에 시공된 Piled Raft 기초의 3차원 거동 분석)

  • Lee, Jin-Hyung;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.63-75
    • /
    • 2007
  • Piled raft is known to be an unfavorable foundation type in soft clay because foundation is associated with both excessive settlement and bearing capacity failure problems. Despite these reasons, in recent decades, an increasing number of structures have been constructed over soft clay area, piled raft concepts arouse interest as the foundation of structures on soft clay area becomes popular. This study described 3 dimensional behavior of piled raft on soft clay based on a numerical study using 3D finite element method. A series of numerical analyses were performed for a various pile lengths and the pile configurations on the raft were subjected to vertical uniform or point loading. Based on the results of the parametric study, comparisons were made among the effect of loading type, various pile length and configurations, and the load-settlement behavior and load sharing characteristics of piled raft were also evaluated. From the results, the characteristic of piled raft on soft clay was examined.

Basic study of new concept environment-friendly pile foundations with earthquake resistant foundation and lateral reinforcement on rapid-transit railway bridge (고속철도교 기초 내진 및 수평저항성능 보강형 신개념 친환경말뚝 신공법의 실용화 기초연구)

  • SaGong, Myung;Paik, Kyu-Ho;Lim, Hae-Sik;Cho, Kook-Hwan;Na, Kyung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.880-894
    • /
    • 2010
  • The Grout injected precast pile is widely used in rapid-transit railway bridge recently. The existing portland cement of well used filling at injected precast method that with low strength and environmental pollution, unstable in which ground water contamination by cement flow out, ground relaxation by water down, decrease of horizontality resistance and durability and load transfer divide etc. In particular, as in rapid-transit railway bridge need to secure safety from different angle with vibration of high speed train, horizontal force when train stop and earthquake. Works of foundation construction consider to requirements of the times to coal yard green growth. Together, new green foundation method for possible economics and securing of reduce the term of works are material to developments. Therefore, we carried out study that it is using and development new concept environment - friendly filling include durability and earthquake resistance, for secure safety and minimize environment pollution. To achieve this, we carried out difference tests that new green fillings of underwater concrete, high liquidity, high viscosity, early stiffness as compared to existing portland cement fillings. As results, new green filling have outstanding application at precast pile method and micropile construction method with vertical bearing capacity, horizontal bearing capacity and many case. From now on we will be looking forward to development of new environment-friendly foundation method from various further studies.

  • PDF

Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses (수치해석을 이용한 파형 마이크로파일의 지지거동 분석)

  • Han, Jin-Tae;Kim, Sung-Ryul;Jang, Young-Eun;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5906-5914
    • /
    • 2013
  • Recently in Korea, the policy is being proceeded to build a intergenerational housing on artificial ground of railroad site for utilizing rental house. Due to narrow space of rail road site, suitable method have to be developed such as micropiles which is known as a method of a fast construction. However, If micropile is used as foundations for the super structure, construction cost is increases compared with other pile. Consequently, new concept micropile proposed to improve both bearing capacity and cost efficiency of general micropile. New concept micropile consists of waveform cement grout surrounding tread bar that formed by grouting the soil layer with jet grouting method as control the grout pressure and flow. The micropile with waveform is expected to decrease the construction cost by cut down pile length of general micropile. This paper examined the behavior of the new concept micropile with waveform subjected to axial load using two-dimensional axisymmetric numerical analyses method. According to the numerical result, there will cost effectiveness as the pile displacement decreased despite the length of waveform micropile is down about 5% from a general micropile under the same loading condition. Also, the effect of skin friction force which mobilized from the waveform of micropile appeared at relatively soft ground.

Settlement Restraint of Soft Ground by Low Slump Mortar Injection (저유동설 몰탈주입에 의한 연약지반의 침하억제 효과)

  • 천병식;여유현;정영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.53-67
    • /
    • 2001
  • In this study the pilot test of CGS as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method and effect of settlement restraint. The site far pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occur continuously because this ground is very soft. Site investigations such as SPT, DCPT and vane shear test were performed to determine the characteristics of ground improvement. Field measurements and FDM analysis were performed on purpose to find out the displacement of ground during injection works. From the results of this study, CGS method can be optimized by the control of diagram, space, depth, injection material, and injection pressure. CGS improved soft ground compositely by the bearing effect of CGS columns and reinforcement of adjacent ground. Considering that increase of N value is about 2.1, CGS can be considered as an effective method to increase the bearing capacity as well as to stop the settlement of soft ground. It is also expected to be economic and effective in improvement of ground when it is used in applicable sites.

  • PDF

An Optimal Design Algorithm of Pile Supported Foundations of Tower Cranes (타워크레인의 파일기초 최적설계 알고리즘 개발)

  • Ryu, Sang-Yeon;Seo, Deok-Seok;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.95-101
    • /
    • 2009
  • As buildings increase in height, lifting plans are becoming increasingly important on construction sites. As a critical piece of load-lifting equipment, the tower crane deserves a well thought-out stability review, since it has a significant impact and is very vulnerable to structural safety disaster. To ensure the structural stability of a tower crane, its lateral support or pile supported foundation designs must include consideration for stability, and pile foundation must be used if site conditions prevent soil from providing the required bearing capacity, or prevent the foundation from being increased to the required extent. Pile supported foundation design requires thorough and systematic review, as more stability parameters need to be considered than with an independent foundation. This paper intends to develop an optimal design algorithm that can minimize associated costs while ensuring the fundamental stability of pile supported foundation design, limiting the scope of research to fixed-type trolley tower cranes using pile supported foundations. The findings herein on pile foundation stability review parameters, process and optimal design are expected to improve the operational efficiency of staff concerned, and reduce the time and efforts required for pile foundation design.

Engineering Properties of PHC Pile Considering Replacement Ratio of Ground Granulated Blast-Furnace Slag and Curing Conditions (고로슬래그 미분말의 치환율 및 양생조건을 고려한 PHC파일의 공학적 특성)

  • Shin, Kyoung-Su;Lim, Byung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.439-446
    • /
    • 2018
  • The PHC pile has been increasingly used due to its implementation of the top-base method, which is advantageous in high penetration rate and bearing capacity reinforcement. Typically, when a PHC pile is manufactured, high-strength mixed materials are mainly used to enhance the compressive strength. However, recent studies have been conducted to utilize ground granulated blast-furnace slag (GGBS) in terms of economic efficiency. For this reason, this study manufactured PHC pile considering the replacement ratio and curing conditions of GGBS instead of high-strength mixed materials, and further investigated the engineering properties of the PHC pile. According to the experimental results, the compressive strength of GGBS-replaced PHC pile increased by steam curing, and particularly, PHC pile with 20% replacement of GGBS under $80^{\circ}C$ steam curing condition showed a compressive strength of approximately 84MPa. Furthermore, the experimental results confirmed that more hydration products were generated under the $80^{\circ}C$ steam curing condition than that under the $20^{\circ}C$ steam curing condition, which would affect the higher density of the PHC pile as well as the increase in the compressive strength.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.