• Title/Summary/Keyword: Pigment analysis

Search Result 416, Processing Time 0.022 seconds

Transcriptome Analysis of Long-Term Exposure to Blue Light in Retinal Pigment Epithelial Cells

  • Jin, Hong Lan;Jeong, Kwang Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.291-297
    • /
    • 2022
  • Dry age-related macular degeneration (AMD) is a type of progressive blindness that is primarily due to dysfunction and the loss of retinal pigment epithelium (RPE). The accumulation of N-retinylidene-N-retinylethanolamine (A2E), a by-product of the visual cycle, causes RPE and photoreceptor degeneration that impairs vision. Genes associated with dry AMD have been identified using a blue light model of A2E accumulation in the retinal pigment epithelium and transcriptomic studies of retinal tissue from patients with AMD. However, dry macular degeneration progresses slowly, and current approaches cannot reveal changes in gene transcription according to stages of AMD progression. Thus, they are limited in terms of identifying genes responsible for pathogenesis. Here, we created a model of long-term exposure to identify temporally-dependent changes in gene expression induced in human retinal pigment epithelial cells (ARPE-19) exposed to blue light and a non-cytotoxic dose of A2E for 120 days. We identified stage-specific genes at 40, 100, and 120 days, respectively. The expression of genes corresponding to epithelial-mesenchymal transition (EMT) during the early stage, glycolysis and angiogenesis during the middle stage, and apoptosis and inflammation pathways during the late stage was significantly altered by A2E and blue light. Changes in the expression of genes at the late stages of the EMT were similar to those found in human eyes with late-stage AMD. Our results provide further insight into the pathogenesis of dry AMD induced by blue light and a novel model in vitro with which relevant genes can be identified in the future.

Color Formation Mechanism of Ceramic Pigments Synthesized in the TiO2-SnO-ZnO Compounds

  • Kim, Soomin;Kim, Ungsoo;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.368-375
    • /
    • 2018
  • This study deals with the color formation of ceramic pigment in the $TiO_2$-SnO-ZnO system. We designed compounds to control the color formation depending on the composition using the Design of Experiment. The color coordinate values of synthesized pigments, $L^*a^*b^*$ were measured and statistically analyzed color for changing elements depending on its composition. The relationship between the major crystalline phases and chromaticity was examined using XRD, and the oxidation states of each element were analyzed by XPS. The synthesized pigments based on the compound design exhibited various color changes ranging from yellow-orange to green-blue and brown. The statistical analysis on the spectrophotometer results shows that $a^*$ and $b^*$ values decreased with $TiO_2$ content, and increased with SnO content. Yellow-orange color was detected with the main peak of SnO, and the green-blue color developed with the main peak of $Zn_2TiO_4$. The $a^*$ and $b^*$ values increased with increased SnO peak intensity, and decreased with increased $Zn_2TiO_4$ peak intensity. The results revealed that pigment color formation was influenced by changes in the main crystalline phases and crystalline intensity. However, XPS analysis of the oxidation states of each element showed little correlation with the pigment chromaticity result.

Application of Photosynthetic Pigment Analysis Using a HPLC and CHEMTAX Program to Studies of Phytoplankton Community Composition (HPLC를 이용한 광합성색소 분석과 CHEMTAX 프로그램을 이용한 식물플랑크톤 군집조성 연구)

  • Lee, Yong-Woo;Park, Mi-Ok;Kim, Yoon-Suk;Kim, Seong-Su;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2011
  • Many studies of the phytoplankton community structure have been conducted using the CHEMTAX program on the basis of the photosynthetic pigment concentrations measured by a HPLC (High-Performance Liquid Chromatography) technique. The CHEMTAX program determines the contribution of each phytoplankton class to total phytoplankton biomass (chlorophyll a) based on the ratios of marker pigment to chlorophyll a of phytoplankton group. In this study, the marker pigment/chlorophyll a ratios were investigated in phytoplankton species isolated from marine waters around the Korean peninsula. These results were used as the input pigment ratios of the CHEMTAX program to investigate phytoplankton community structure in Korean coastal waters (Yeoja and Gamak Bay). There were significant differences in the ratios of marker pigment to chlorophyll a among the different species within the same algal class. There was a significant difference between the values of our ratios and the previously used ratios in other regions of the world. When phytoplankton community composition was calculated using our initial ratios in Yeoja and Gamak Bay, our results were significantly different from the results calculated on the basis of initial ratios of marker pigment in phytoplankton suggested in other marine waters. The estimates of the contributions of the major algal groups (bacillariophyceae and dinophytes) to total chlorophyll a varied within 5% depending on the initial ratios chosen. The variations of estimates for the pico- and nanoplankton (cyanophytes and prasinophytes), which have relatively low contributions to total chlorophyll a, were higher than those for major algal group. Although the HPLC-pigment measurements combined with CHEMTAX analysis are useful for identifying and qualifying phytoplankton community structure, further researches for the pigment ratios of the dominant phytoplankton species presenting in a given area are also needed.

Material Analysis and Coloring Characteristics of Korean Traditional Copper-red Pigment (Jinsa) (동화(진사) 안료의 재료과학적 분석 및 발색특성)

  • Kim, Ji-Young;Cho, Hyun-Kyung;Jun, Byung-Kyu;Cho, Nam-Chul;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.31-40
    • /
    • 2011
  • Copper-red (Dongwha, Jinsa) is Korean traditional inorganic pigment used for red-coloring on the porcelain surface during Goryeo and Joseon Periods. Trace amounts of copper-red porcelains are handed down because of the technical difficulty of making and coloring of the pigment. It is known that copper ore sources were extensively distributed in Korea according to old literatures and some of them are still producing copper ore at this present. Main types of copper-bearing mineral in Korea are chalcopyrite ($CuFeS_2$) and malachite ($Cu_2CO_3(OH)_2$), and they are easily collected from the ground surface. This means Korea had geographical and economic geological advantages for supplying raw material of the pigment. These two minerals showed good red-coloring in color test for porcelain pigment. As a coloring element, copper showed micro size less than $5{\mu}m$ in diameter in glaze matrix. The dispersion of copper particle is the most decisive factor for red chromaticity of copper-red porcelain, as well as copper content of the pigment.

Effect of Bi and Zr addition on yellow colour properties of environment-friendly ceria-based pigments (비스무스와 지르코늄 첨가를 통한 세리아계 친환경 노란색 안료 특성에 관한 연구)

  • Kim, Tae-Ho;Hwang, Hae-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.153-159
    • /
    • 2015
  • Inorganic pigments have been received a great attention for various applications including paint, glazed ceramic ink, art tile, and building exterior due to their excellent thermal and chemical stability. Traditionally, the compositions of $PbCrO_4$, CdS and CdSe have been widely used as a yellow inorganic pigment. However, the use of these compositions has been restricted in recent years, because they contain harmful elements such as Cd, Cr, Pb and Se. In this study, new environment-friendly ceria-based pigment was synthesized using solid state reaction. Crystal structure and morphology of the obtained $Ce_{1-x}Zr_xBi_yO_{2-y/2}$ yellow pigment were analyzed using XRD and SEM, respectively. Substitutional effect of Zr and Bi on the pigment color was analyzed using UV-vis. spectrophotometer and CIE $L^*a^*b^*$ analysis. The crystal structure of the obtained pigments was dependent on the calcination temperature. The color characteristics and absorption band of the pigments were dependent on the calcination temperature and Zr, Bi contents. As a result, all the obtained yellow pigments showed the effective absorption ranged from ultraviolet to visible light, and $Ce_{0.44}Zr_{0.36}Bi_{0.20}O_{0.19}$ (x = 0.36, y = 0.20) pigment showed the most brilliant yellow color.

Study on the Quantitative Analysis Methods of Hexavalent Chromium in Flexography Inks and Organic Pigments - Alkaline digestion and Colorimetric Measurement - (플렉소 잉크 및 유기안료의 6가 크롬 함량 측정 방법에 관한 연구 - 알칼리 분해 및 비색측정법 -)

  • Kim, Jin-Woo;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.33-42
    • /
    • 2009
  • This study was performed to evaluate the hexavalent chromium content in flexography inks and organic pigments used as colorants for the ink. The digestion of sample was carried out under alkaline condition, and the content of soluble hexavalent chromium extracted from samples was determined by UV-visible colorimetric analysis method after alkaline digestion. Duplicate sampling system to obtain two digested samples, was applied in this study. To determine the hexavalent chromium content in the flexography ink and organic pigment colorimeteric analysis was employed. Because the organic pigment is the main ingredient of flexography ink it is important to remove the errors associated with the colorant of the ink in colorimetric determination. The duplicate sampling system allowed us to correct the errors associated with the colorimeteric measurement. The additional filtration was found an essential step to exclude colorimeteric error derived from the various precipitates. The soluble hexavalent chromium content in flexography inks was generally less than 5 ppm. Yellow, violet and some magenta colors showed higher soluble hexavalent chromium contents. The content of hexavalent chromium in organic pigments was greater than flexography inks, and yellow, violet and some magenta pigments contained greater amount of hexavalent chromium, which indicated that the hexavalent chromium in inks derives from the colorants. The soluble hexavalent chromium content in linerboards were below 1 ppm, and no hexavalent chromium was detected in UKP. Results suggested that flexography ink is the main factor to cause hexavalent chromium in linerboard and organic pigments.

Application of Handheld Raman Spectroscopy for Pigment Identification of a Hanging Painting at Janggoksa Temple(Maitreya Buddha) (장곡사 미륵불 괘불탱의 채색 재료 분석을 위한 휴대용 라만 분광기의 적용성 연구)

  • LEE Na Ra;YOO Youngmi;KIM Sojin
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.216-228
    • /
    • 2023
  • The purpose of this study is to apply the handheld Raman spectrometer to identify the coloring materials used in a large Buddhist painting (of Maitreya Buddha) at Janggoksa Temple through cross-validation with HH-XRF. An in situ investigation was performed together with use of a digital microscope and HH-XRF analysis to verify the properties of pigments used in the gwaebul ("large Buddhist painting") via a non-destructive method. However, the identification of coloring materials composed of light elements and mixed or overlaid pigments is difficult using only non-destructive analysis data. Unlike in situ investigation, laboratory analysis often required samples yet the sampling is restricted to a small quantity due to the cultural heritage characteristic. Thus, it is necessary to develop a non-destructive in situ method to supplement the HH-XRF data. The large Buddhist painting at Janggoksa Temple was painted mainly using white, red, yellow, green, and blue colors. The Raman spectroscopy provides molecular information, while XRF spectroscopy provides information about elemental composition of the pigments. Analysis results identified various coloring materials: inorganic pigment, such as lead white, minium, cinnabar, and orpiment, as well as organic pigment such as gamboge and indigo. Therefore, it is possible to obtain more information for the identification of pigments; organic pigment and mixed or overlaid pigments, while at the same time minimizing the collection sample and simplifying the analysis procedure compared to previously used methods. The results of this study will be used as basic data for the analysis of painting cultural heritage through a non-destructive in situ method in the future.

The Synthesis of Crystalline-Size Controlled Organic Pigment by Microwave Energy (마이크로파 에너지에 의해 결정 크기가 조절된 유기 안료의 합성)

  • 정기석;고진필;박상보;박찬영;민성기;권종호;오인환;박성수
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.609-616
    • /
    • 2001
  • The application of microwave technology to synthesis of polymer in solvent media has been shown by the synthesis of copper phthalocyanine (CUPc). The increase of synthetic yield-was demonstrated successfully in this study. A power variable microwave synthetic system has been developed with modifying cavity of domestic microwave oven and attaching microwave power controller. The properties of the specimen synthesized at various condition under the conventional thermal processing and microwave processing has been characterized by the means of chemical analysis, X-ray diffractometry (XRD), scanning electron microscopy (SEM), and particle size analysis (PSA).

  • PDF

The Influence of Firing Conditions on the Color Properties of Pr-ZrSiO4 Pigments Synthesized Using Rice Husk Ash

  • Pyon, Kyu-Ri;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.397-404
    • /
    • 2009
  • Using rice husk ash as silica, the influence of the firing temperature and holding time on the color intensity of Pr-$ZrSiO_4$ pigments were investigated. The Pr-yellow pigments were calcined at 500, 700, 800, 900, 950, 1000, $1100^{\circ}C$ in a ceramic method. The synthesized pigments were characterized by DT-TG thermal analysis, X-ray diffraction, UV-Vis spectroscopy, and SEMEDAX analysis. The relationship between the zircon phase-formation growth and Pr-yellow color development was evaluated and the optimum firing conditions were determined. The color of the pigment samples was characterized on the grounds of the Commission Internationale de l'Eclairage (CIE) standard procedure (CIE $L^*a^*b^*$ measurement) after an application on the bisque ceramic tile.