• Title/Summary/Keyword: Pig manure compost

Search Result 123, Processing Time 0.027 seconds

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF

Improvement in the Operating Conditions of the Rotary Mixing Compost Plants (로터리 교반식 퇴비화 시설의 운전 조건 개선)

  • Kim, Eun-Kyoung;Lee, Taek-Soon;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.355-361
    • /
    • 1996
  • The Purpose of this study was to investigate the effect of the Change in the operating conditions on rotary turning compost plants. The major parameters investigated were moisture content and mixing of the sawdust and pig farm wastewater. Pig farm scale composting plants with mixing rotary were used in this study. Wastes used for the study were sawdust, pig manure, urine and wastewater. When the moisture content was 75%, the compost product obtained from the plants had better physical characteristics than that obtained from the plants with moisture contents of 70%, 80% and 85%.(two a day mixing). When the turning was twice a day, the compost product obtained from the plants had better characteristics than that obtained from non-mixing.(moisture content 75%). C/N ratio, pH value and coliform bacterial population were stable in the compost.

  • PDF

Soil Nitrogen Mineralization Influenced by Continuous Application of Livestock Manure Composts (가축분퇴비가 연용된 밭 토양에서 잠재적 질소 무기화량 추정)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Yang, Jae-E;Lee, Sang-Min;Shin, Jae-Hun;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.329-334
    • /
    • 2010
  • The characteristics of nitrogen mineralization in upland soil was studied with 27-week incubation at $25^{\circ}C$. The used soils in this experiment were received six kinds of livestock manure compost each year for four years. Six different composts, which were chicken (CHM), pig (PIM), and cow (COM) manure composted without bulking agent, and chicken (CHMS), pig (PIMS), and cow (COMS) manure composted with sawdust as a bulking agent, were selected for this study. The first-order model was fit to the observed mineral nitrogen (N) vs incubation days using a non-linear regression procedure. The soil potential for N mineralization (No) of manure compost (CHM, PIM, and COM) treated soils were higher than those of the manure-sawdust compost (CHMS, PIMS, and COMS) treated soils. The No value of PIM applied soil was 15.0 mg 100 $g^{-1}$, which was the highest value among the treatments. The amount of N mineralized in compost applied soils ranged from 8.1% to 11.9% of the total N content in soils and increased with increasing total N content in soils. The organic matter content in compost applied soils were negatively correlated with No value (r = $-0.69^*$). Therefore, our result indicated that determination of N application rate in livestock manure compost applied soil should be based on total nitrogen content better than soil organic matter content.

Occurrence of Tetracyclines Resistant Bacteria in the Soil Applied with Livestock Manure Compost (가축분 퇴비 시용 농경지 내 Tetracyclines 내성균 분포 특성)

  • Kim, Song-Yeob;Kim, Jang Hwan;Kim, Sung Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.409-413
    • /
    • 2014
  • BACKGROUND: Large amount of veterinary antibiotics have been used in the livestock industry to prevent diseases and promote growth. These antibiotics are excreted through feces and urine in unchanged form and reach to agricultural fields via application of the livestock manure based composts. The purpose of this study was to evaluate the occurrence of tetracyclines-resistant bacteria in the soil received livestock manure compost for a long term. METHODS AND RESULTS: Tetracyclines (tetracycline TC, chlortetracycline CTC, and oxytetracycline OTC) resistance bacteria in the soil of rice-onion field applied pig manure compost (PM), in the soil of grass-rye field received cow manure compost (CM), and in the soil of rice field applied inorganic fertilizer (NPK) were determined. The soil received livestock manure composts clearly showed higher number of TC, CTC, and OTC resistance bacteria compared with the soil treated with inorganic fertilizer. The antibiotic resistant bacteria recovered appeared at 80 mg/L of tetracyclines was identified 1 specie, 6 genera 7 species, and 6 genera 7species in the soils received CM, PM, and NPK, respectively. The dominant resistant bacteria with the CM and PM application were Ochrobactrum and Rhodococcus. CONCLUSION: The application of livestock manure compost in the agricultural field is likely to contribute the occurrence of antibiotic resistance bacteria in the agricultural environment.

Soil Organic Matter Fractions in Upland Soil under Successive Application of Animal Manure Composts (밭 토양에서 가축분퇴비 연용시 토양 유기물 Fraction)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Yang, Jae-E;Lee, Yong-Bok;Lee, Kee-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.400-404
    • /
    • 2007
  • The objective of this study was to analyze change of soil organic matter fraction from a range of livestock manure compost that differed in their total C, N content and C quality, to gain a better understanding of their influence on soil organic matter. The chicken (CHM), pig (PIM), and cow (COM) manure-based composts, and manure-sawdust-based composts (CHMS, PIMS, and COMS) were applied annually to the upland soil with $3Mg\;C\;ha^{-1}$ during 4 years. After 4 years, the soil carbon content was increased to 25-30 and 40% for manure-based compost and manure-sawdust-based compost compared to control. In the all treatments, the content of light fraction C was sharply increased after second year. The content of light fraction C in the manure-sawdust-based compost was higher than in the manure-based compost. By contrast, the content of heavy fraction C was higher in the manure-based compost than in the manure-sawdust-based compost. These results indicate that stabilization of carbon applied from microbiological process was faster in the manure-based compost than in the manure-sawdust-based compost.

Effect of Adding Gypsum and Coal Fly Ash on Composting Process of Pig Manure (돈분 퇴비화 공정에서 석고 및 석탄회의 첨가효과)

  • 유현철;김정섭;곽명화;이히인;박승조
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.32-36
    • /
    • 2002
  • This study was conducted to compost the mixture of Pig manure, gypsum and fly ash. Initial moisture contents of sample A (Pig manure : saw dust = 6 : 4) and C (Pig manure : saw dust : gypsum : coal fly ash= 6 : 2 : 1 : 1) in the reactor were 64 and 50%. Also temperature and pH of samples in the reactor was nearly the same. Total Organic Carbon (TOC) concentration of sample A and C were about 5500, 2900 mg/kg respectively. This sample was needed a lot of time to mature as viewing cation exchange capacity (CEC) after experiment was over. However added with gypsum and coal fly ash in Process of Pig manure composting Process was suggested that gypsum and coal fly ash have a roles of additive agent.

Assessment of Nutrient Losses in Different Slope Highland Soils Amended with Livestock Manure Compost (경사도와 축분 부산물비료 시용에 따른 고랭지 밭의 양분 유실량)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.361-367
    • /
    • 2011
  • Soil fertility of alpine soils in Gangwon-Do has been deteriorating because of heavy input of chemical fertilizers for intensive crop production. To reduce application of chemical fertilizers, use of livestock manure compost in alpine soils increases consistently. Soil loss and runoff due to heavy rainfall in alpine area cause nutrient loss from soil, and subsequently pollute stream water. Therefore, the objective of this study was to assess nutrient efficiency and loss in Chinese cabbage cultivated soil with different livestock manure composts in several slopes. As control, chemical fertilizer was applied at the rate of $250-78-168kg\;ha^{-1}$ for $N-P_2O_5-K_2O$. Each pig-and chicken manure compost was applied at the rate of $10MT\;ha^{-1}$. Chemical fertilizer + chicken manure compost was applied as same rate. Four treatments was practiced in 5, 20, and 35% filed slopes, respectively. We monitored the amounts of soil loss and runoff water after rainfalls, and we also analyzed the contents of nutrients in soil and runoff water through lysimeter installed in alpine agricultural institute in Gangwon-Do. T-N loss due to soil loss was much greater with increasing filed slops rather than different fertilizer treatments. T-N loss has positive relationship with field slopes, which showing soil loss (MT/ha) = 1.66 slopes (%) - 3.5 ($r^2$ = 0.99). Available phosphate and exchangeable cations showed similar tendency with increasing slopes. T-N and T-P losses caused by runoff water were highest in chemical fertilizer (NPK) + chicken manure compost treated plot, while lowest in chemical fertilizer treatment. T-N contents (2.13, 1.95%) in chinese cabbage treated either pig and chicken manure composts compared to that (2.65%) of chemical fertilizer were significantly less. This could be resulted from much greater T-N loss in soil treated with pig and chicken manure composts.

Furrow Cover Effects of Black Non-woven Fabric on Reduction of Nitrogen and Phosphorus Discharge from Upland Soil Used for Red Pepper Cultivation

  • Hong, Seung Chang;Kim, Min Kyeong;Jung, Goo Buk;So, Kyu Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.671-676
    • /
    • 2015
  • Control of surface runoff from upland soil is essential to reduce nonpoint source pollution. The use of non-woven fabric as a soil cover can be helpful to control surface runoff. The field experiment was conducted to evaluate the furrow cover effects of black non-woven fabric on the nutrient discharge from upland soil used for red pepper cultivation. The experimental plots consisted of chemical fertilizer (CF), cow manure compost (CMC), and pig manure compost (PMC) treatment. Each nutrient material treatment plot has control (no furrow cover (NFC)) and black non-woven fabric cover treatment, respectively. The amount of nutrient application was chemical fertilizer of $190-112-149(N-P_2O_5-K_2O)kgha^{-1}$, cow manure compost of $29.5tonha^{-1}$, and pig manure compost of $7.9tonha^{-1}$ as recommended amount after soil test for red pepper cultivation. Compared to control (NFC), furrow cover treatment with black non-woven fabric reduced the amount of T-N discharge by 50% at CF treatment, 36.9% at CMC treatment, and 44.8% at PMC treatment. Furrow cover treatment with black non-woven fabric reduced the amount of T-P discharge by 37.1% at CF treatment, 49.9% at CMC treatment, and 63.4% at PMC treatment compared to control (NFC). The production of red pepper did not show significant difference. There was no weed occurring in furrow cover treatment plots with black non-woven fabric. Results from this study showed that the furrow cover with black non-woven fabric could play a significant role in reduce nutrient discharge from upland soil used for red pepper cultivation.

Study on the Improvement of Soil for High Efficient and Sustainable Agriculture-I. Effect of Repeated Application of Chicken and Pig Manure Composts on Tomato Growth and Soil Physico-chemical Properties (지속적 농업을 위한 고성능 토양의 개발 연구-I. 계분 및 돈분퇴비의 연용이 방울토마토(Lycopersicum esculentum var. cerasiforme)의 생육 및 토양의 이화학성에 미치는 영향)

  • Cho, Sung-Hyun;Lee, In-Bog;Chang, Ki-Woon
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.451-456
    • /
    • 1998
  • To find out the repeated application effect of chicken and pig manure composts on tomato growth and soil physico-chemical properties, different rates of the composts were applied to greenhouse soils with low fertility for 3 years and tomato was grown annually. As application rate of compost increased, the growth and fruit yield of tomato increased markedly, and there are also a little increase in sugar content in fruit juice and weight per fruit. When only compost was applied, however, physical and chemical properties in soil showed to be unbalanced such as significantly low bulk density and hardness, and high porosity as well as high organic matter and exchangeable K content, and low exchangeable Ca content than those of optimum range for soil diagnosis. Therefore mixed use of compost and chemical fertilizer is more promising way than the only use of compost to make suitable physico-chemical properties for tomato growth.

  • PDF

Composting of the Mixtures with Pig Manure and Castor Meal (돈분과 피마자박의 혼합비율에 따른 퇴비화 연구)

  • Chang, Ki-Woon;Lee, Jong-Jin;Hong, Joo-Hwa;Kim, Nam-Chean;Kim, Wan-Ju;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.34 no.2
    • /
    • pp.181-188
    • /
    • 2007
  • This study was conducted to estimate the humificating grade according to experiment of physico-chemical characterization and phyto-toxicity during composting of using with pig manure and castor meal. The material ratios of the compost which was mixed with pig manure(P), castor meal(C), and saw dust(S) were 5 : 1 : 4(PCS-I), 5 : 2.5 : 2.5(PCS-II) and 5 : 4 : 1(PCS-III) by volume to volume, and they were decomposed for 60 days. In the result, the changes of temperature in all treatments during composting were rapidly increased more than $68^{\circ}C$ at the incipient stage, and gradually decreased within $39^{\circ}C$ at 60 days the after treatment. pH was slowly increased from 7.5 to 7.7, and the C/N ratio was 13~14 at the final composting stage. The low C/N ratio value in this compost was caused by the castor meal contented high nitrogen level(T-N 5.7 %). G.I.(germination index) was showed 73 to 78 range in all treatments at the $60^{th}$ day. Among all treatments PCS-I was appeared to be the best condition for composting.

  • PDF