• Title/Summary/Keyword: Pig compost

Search Result 166, Processing Time 0.028 seconds

Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil (밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가)

  • Yun, Hong-Bae;Lee, Youn;Lee, Sang-Min;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia in atmosphere has a negative effect on the natural ecosystems, such as soil acidification and eutrophication, by wet and dry deposition. Livestock manure, compost, and fertilizer applications to arable land have been recognised as a major source of atmospheric ammonia emissions. The objective of this study was to evaluate the efficiency of compost application techniques in reducing ammonia loss in upland soil. The reductions in ammonia emission were 70 and 15% for immediate rotary after application (IRA) and rotary at 3 day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied with compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. The ammonia emission rate fell rapidly 6 h after application and 61 % of total ammonia emission occurred within the first 24 h following surface application. The lime application along with compost significantly enhanced the total ammonia emission. Total ammonia emission for 22 days were 40.1, 31.4, and 27.7 kg/ha for immediate incorporation in soil after lime and compost application, lime incorporation in soil following 3 days after compost surface application, and compost incorporation in soil following 3 days after lime surface application, respectively. Therefore, lime and livestock manure compost application at the same time was not recommended for abatement of ammonia emission in upland soil.

Soil Organic Matter Fractions in Upland Soil under Successive Application of Animal Manure Composts (밭 토양에서 가축분퇴비 연용시 토양 유기물 Fraction)

  • Yun, Hong-Bae;Lee, Youn;Yu, Chang-Yeon;Yang, Jae-E;Lee, Yong-Bok;Lee, Kee-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.400-404
    • /
    • 2007
  • The objective of this study was to analyze change of soil organic matter fraction from a range of livestock manure compost that differed in their total C, N content and C quality, to gain a better understanding of their influence on soil organic matter. The chicken (CHM), pig (PIM), and cow (COM) manure-based composts, and manure-sawdust-based composts (CHMS, PIMS, and COMS) were applied annually to the upland soil with $3Mg\;C\;ha^{-1}$ during 4 years. After 4 years, the soil carbon content was increased to 25-30 and 40% for manure-based compost and manure-sawdust-based compost compared to control. In the all treatments, the content of light fraction C was sharply increased after second year. The content of light fraction C in the manure-sawdust-based compost was higher than in the manure-based compost. By contrast, the content of heavy fraction C was higher in the manure-based compost than in the manure-sawdust-based compost. These results indicate that stabilization of carbon applied from microbiological process was faster in the manure-based compost than in the manure-sawdust-based compost.

Effect of Surfactant-Coated Charcoal Amendment on the Composting Process and Nutrient Retention

  • Pinwisat, Phetrada;Phoolphundh, Sivawan;Buddhawong, Sasidhorn;Vinitnantharat, Soydoa
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • This research investigates the quality changes during composting of bagasse and pig manure amended with 30% of surfactant-coated charcoal (SC). Two treatments, 30% uncoated charcoal (UC) amendment and no charcoal (NC) amendment, were done as control. Charcoal was coated with 0.37 mM tetradecyltrimethylammonium bromide (TDMA), a cationic surfactant, at the dosage of 10 g/L. At the end of the composting period, the carbon to nitrogen (C/N) ratio of SC amendment was 9.7; whereas, the C/N ratios of UC and NC amendment were 12.6 and 21.4, respectively. Plant nutrients contents of the compost produced from SC amendment were 20.7 mg $NH_4{^+}-N/g$, 42.8 mg $NO_3{^-}-N/g$, and 41.7 mg P/g. High nitrate and phosphate concentrations in SC amendment were due to the adsorption of these anions on the positive charge of TDMA. Desorption of plant nutrients retained in the compost pellets was also investigated. It was predicted that nitrate was fully desorbed from a pellet at 23 days for SC amendment, which was later than UC (14 days) and NC (10 days) amendment. A slow release of nitrate from the compost pellet will reduce the nitrate leaching into the environment. Thus, the adding of SC in the compost pile is one of the alternative methods to improve the quality of compost and plant nutrient retention.

Effect of Consequent Application of Pig Manure Compost on Soil Chemical Properties and Dehydrogenase Activity in Volcanic Ash Soil (돈분퇴비 연용이 감자재배 화산회토양의 화학성과 탈수소 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Won, Hang-Yeon;Koh, Sang-Wook;Hyun, Hae-Nam;Lee, Chong-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • This study were carried out to evaluate effect of consequent application of pig manure compost (PMC) on soil chemical properties, dehydrogenase activity, and yield of potato in volcanic ash soil. The more application rate of PMC increased, the more increased soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), heavymetal (Zn and Cu)contents. When application rate of PMC and crop cultivation times increased gradually, soil dehydrogenase activity was significantly increased. After third cultivation period, dehydrogenase activity showed PMC 2 ton (3.5), PMC 4 ton (6.3), PMC 6 ton (8.0 ug TPF $g^{-1}\;24h^{-1}$), respectively. The activity was twofold higher than first cultivation period. During the third cultivation period, dehydrogenase activity increased linearly comparison to Cu and Zn contents and that was correlated with Cu ($R^2$=0.907) and Zn ($R^2$=0.859) content, respectively. As the application rate of PMC increased, the yield of potato increased, but NPK+PMC 2 ton treatment was more higher than other treatments.

Effects of Biochar Pellet Application on the Growth of Pepper for Development of Carbon Sequestration Technology in Agricultural Practice (토양 탄소 격리 기술 개발을 위한 바이오차 팰렛 시용에 따른 고추 생육 효과)

  • Shin, JoungDu;Choi, YoungSu;Lee, SunIl;Hong, SeungChang;Lee, JongSik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.87-92
    • /
    • 2017
  • Objective of this experiment was to evaluate the effect on pepper growth to application of biochar pellet in case of development of soil carbon sequestration technology. The treatments consisted of control as a general agricultural practice method, pellet (100% pig compost), biochar pellets with mixture ratio of pig compost (9:1, 8:2, 6:4, 4:6, 2:8) for comparison of total carbon contents, $NH_4-N$ concentrations, and total biomass in the pots applied with biochar pellets after pepper harvesting. The application rates of biochar pellet was 8.8 g/pot regardless of their mixed rates based on recommended amount of application (440 kg/10a) for pepper cultivation. For the experimental results, Total carbon contents in the treatments were low from 1.8 to 2.6 fold as compared to the control. $NH_4-N$ concentrations were not significantly different among the treatment plots as compared to the control, but $NO_3-N$ was not detected in the all treatment plots. However, total biomass was not only significantly different between the control and 2:8 (biochar : pig compost) biochar pellet application plot even if the other treatments were low. Therefore, this biochar pellet application might be further modified for soil carbon sequestration in agricultural farming practices.

Effects of Organic Materials on Soil Organisms in a Korean Ginseng Field (인삼재배지 유기물 시용이 토양미생물과 미소동물에 미치는 영향)

  • Eo, Jin-U;Park, Kee-Choon;Lee, Sung-Woo;Bae, Yeoung-Seuk;Yeon, Byung-Ryul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.188-193
    • /
    • 2010
  • The aim of this study is to evaluate the effects of organic materials on soil organisms. Changes in the community structure, and population density of soil organisms (microbes, nematodes, and microarthropods) were studied in a Korean ginseng field. Phospholipid fatty acids analysis showed that the relative abundances of bacteria, fungi, and actinomycetes did not differ significantly. The aerobes/anaerobes ratio was the lowest in soils amended with leaf mold, indicating that the decomposition speed was slow. Further, the addition of leaf mold to the soil enhanced the saturated/monounsaturated fatty acid ratio and cyclopropyl fatty acid/precursor ratio, which indicated an increase in environmental stresses. Application of pig manure compost (PMC) had positive effects on the population density of nematodes, and negative effects on that of oribatid mites. The population densities of nematodes, and microarthropods remained relatively low in the plots that had been treated with leaf mold or pig manure compost. It is suggested that pre-planting soil management directed at enhancing the biological decomposition efficiency should be continued over a long period to increase the soil bioactivity in virgin soils.

Uptake of Heavy Metals by Radish (Raphanus sativus cv. sodamaltari) from the Soils after Long-Term Application of Organic Wastes (유기성 폐기물 장기시용 후 토양에서 무 (Raphanus sativus cv. sodamaltari)의 중금속 흡수)

  • Kwon, Soon-Ik;Jang, Yeon-Ah;Kim, Kye-Hoon;Jung, Goo-Bok;Kim, Min-Kyeong;Hwang, Hae;Chae, Mi-Jin;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • This study was carried out to understand the long-term effects of organic waste treatments on the fate of heavy metals in soils originated from the organic wastes and consequent uptake of heavy metals by plant, together with examination of changes in soil properties and plant growth performance. In this study, the soils treated with three different organic wastes (municipal sewage sludge, alcohol fermentation processing sludge, pig manure compost) at three different rates (12.5, 25.0, 50.0 ton $ha^{-1}yr^{-1}$) for 7 years (1994 - 2000) were used. To see the long-term effect, plant growth study and soil examination were conducted twice in 2000 and 2010, respectively. There was no additional treatments of organic wastes for 10 years after the organic waste treatment for 7 years. Compared to plant growth examination conducted in 2000 using radish (Raphanus sativus cv. sodamaltari), it appeared that height, root length and diameter, fresh weight of radish grown in 2010 decreased in the plots treated with municipal sewage sludge and alcohol fermentation processing sludge and that the extent of decrease was higher with increase of sludge application rates. On the other hand, pig compost treatment increased plant height, root length and diameter, fresh weight with increasing application rates. Cu and Pb concentrations in radish root and leaves increased in 2010 compared to those in 2000 while Ni concentrations in root and leaves decreased. Zn concentration was increased only in the soils treated with pig manure compost. Multiple regression analysis among heavy metal species fractions in soils, soil pH, and metal concentrations in radish root and leaves indicated that the metal uptake by radish was governed mainly by the soil pH and subsequent increase of available heavy metal fractions in soils with organic waste treatments.

Effects of Liming on Uptake to Crops of Heavy Metals in Soils amended with Industrial Sewage Sludge (하수오니 시용토양에서 작물의 중금속 흡수이행에 미치는 석회의 영향)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • The effect of lime on plant availability of heavy metals in soils amended with industrial sewage sludge (ISS) or pig manure compost (PMC) was investigated. A pot experiment with Altari radish (Raphanus sativus) was conducted. Industrial sewage sludge and Pig manure compost were added at 25 and 50 Mg/ha, and lime was added at 3 Mg/ha. Heavy metal contents of ISS treated soils after experiment were higher than those in control (NPK plot) and PMC treatment. Specially, the contents of copper, zinc, nickel and chromium in the 50 Mg/ha of ISS treated soils were higher 12$\sim$48 times than those in control. Copper, zinc, and nickel contents in Altari radish leaves cultivated at the ISS treated soil exceeded the critical levels of plant toxicity. Copper, zinc, and nickel contents in Altari radish loaves and roots cultivated at the ISS treated soil were reduced by the addition of lime. Copper, zinc, and nickel contents in Altari radish loaves were negatively correlated with soil pH after experiment. It concluded that liming would reduce the uptake of heavy metals by plants and be a temporary method of reclamation at the highly heavy metal accumulated soils by ISS.

Effects Of the Inoculation Of Candida rugosa CY-10 OH the Reducing Odours in Pig Slurry Medium (Candida rugosa CY-10의 접종에 따른 돈분배양액내 악취저감 효과에 관한 연구)

  • 김민균;김태일;정광화;강기효;곽정훈;유용희
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2002
  • This study was carried out to isolate and identify the yeasts from the the composts, which were effective to reduce odor of the pig feces, and to investigate their physiological properties. In yeasts, one of 30 isolates was obtained on 10% pig feces extract medium. Judging from the morphological and biochemical characteristics, the CY-10 isolated from the compost were identified as Candida rugosa. This isolated strain showed the deodorizing activity by reducing the concentration of $NH_3$ and R-$NH_2$ than that of the control. The CY-10 had completely utilizing butyric acid and iso-butyric acid including 10% pig slurry of the volatile fatty acids, which are the specific malodorous agents of pig feces. Compared to control, this yeast was found effective for decrease in $NH_4$-N, Soluble-N and BOD, 20%, 12.6%, and 9.82% respectively.

  • PDF

Effect of aeration on the physicochemical characteristics of livestock feces compost during composting period (퇴비화과정 중 공기공급 여부가 가축분뇨 퇴비의 물리화학적 특성에 미치는 영향)

  • Jeong, Kwang-Hwa;Kang, Ho;Kim, Tai-ll;Park, Chi-Ho;Yang, Chang-Buem
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.57-65
    • /
    • 2003
  • Livestock farming is one of several industries that have faced criticism because of its impact on the water quality, soil contamination and air pollution. The livestock feces can cause some environmental problems. The best way to treat the feces is to recycle the manure as an organic fertilizer after fermentation or composting. This study was carried out to investigate the characteristics of composting of manure in several composting conditions. The variations of physicochemical characteristics of each compost piles containing different level of air volume were analyzed throughout the composting period. In this study, pigs manure compost piles mixed with saw dust were composted in 110L of laboratory scale plastic vessels and $1.5m^3$ of small cubic wooden composting vessels for 60days. The compost piles were ventilated continuously with air pump throughout the composting duration. The air volume ventilated into the piles was regulated by chock valve attached to the inlet pipe. The ventilation level was adjusted by 20, 50, 100, 150 and $200L/m^3/mim$, respectively. The highest temperature of the compost increased to $72^{\circ}C$ during composting period. After 20days from beginning of fermentation, concentrations of $H_2S$, $CH_3SH$, DMS and DMDS generated from compost piles were 29, 16, 6 and 5ppb in blow in state compost pile, conversely, in blow out state compost pile, the parameters were 32, 24, 15 and 14ppb, respectively.

  • PDF