• Title/Summary/Keyword: Piezoelectric properties

Search Result 1,097, Processing Time 0.031 seconds

Dielectric and Piezoelectric Properties of Low Temperature Sintering PZN-PZT Ceramics with a variation of $Li_2CO_3$ Addition ($Li_2CO_3$ 첨가에 따른 저온소결 PZN-PZT 세라믹스의 유전 및 압전특성)

  • Lee, Yu-Hyong;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.307-307
    • /
    • 2007
  • 압전액츄에이터 및 초음파진동자는 전자제품의 소형화 및 경량화, 의료기기, 모바일기기 및 소형로붓의 발전에 힘입어 그 활용범위가 넓게 확장되고 있다. 1960년 Smolenski등에 의해 $A(B_1,B_2)O_3$형 복합 페로브스카이트 구조를 갖는 강유전성 세라믹스에 대한 연구가 시작된 이래 $Pb(Co,Nb)O_3-Pb(Zr,Ti)O_3$, $Pb(Zn,Nb)O_3-Pb(Zr,Ti)O_3$, $Pb(Mg,Nb)O_3-Pb(Zr,Ti)O_3$ 등 3성분계 세라믹스의 유전, 압전 및 강유전 특성에 대한 많은 연구가 진행되어 왔다. 그러나 압전성이 우수한 세라믹스들은 Pb가 포함되어 있기 때문에 $1000^{\circ}C$ 이상에서 PbO가 급격하게 휘발되는 성질에 따라서 조성의 변동이 생겨 재현성이 어려우며 이를 방지하기 위하여 과잉 PbO를 첨가시키기 때문에 환경오염뿐만 아니라, 경제적인 측면에서도 많은 문제점을 가지고 있다. 소결조제를 이용한 산화물 첨가법은 PbO의 휘발을 억제하는 저온소결 방법중 가장 효과적인 방법으로 알려져 있다. 따라서, 본 연구에서는 적층형 압전액츄에이터로 사용하기위한 저온소결 압전세라믹스를 개발하기 위하여 PZN-PZT세라믹스에 $Li_2CO_3$, $Bi_2O_3$, CuO 를 소결조제로 사용하여 $Li_2CO_3$의 첨가량 변화에 따른 압전 및 유전 특성을 관찰하였다.

  • PDF

(1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$ 무연 압전세라믹스의 첨가물질에 따른 전기적 특성 평가

  • U, Deok-Hyeon;Ryu, Seong-Rim;Yun, Man-Sun;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.260-260
    • /
    • 2007
  • 강유전성 세라믹스 재료로써는 PZT계열의 세라믹재료가 널리 쓰이고 있다. 이는 우수한 유전 및 압전특성을 가지고 있으나, PbO을 다량 함유하고 있어 $1000^{\circ}C$이상에서 PbO가 급격하게 휘발되는 성질에 따라서 조성의 변동이 생겨 재현성이 어려우며 이를 방지하기 위하여 과잉 PbO를 첨가시키기 때문에 PbO휘발로 인한 강한 독성이 인체에 유해하다. 최근에는 Pb의 환경문제가 대두됨에 따라 이를 대체할 다른 물질의 개발이 활발하게 연구되고 있다. 대표적인 비납계 강유전 세라믹스인 $(Na_{0.5}K_{0.5})NbO_3$ ($d_{33}$ = 120 pC/N, Kp = 39%, Qm = 210, 이하 NKN라 표기) 조성은 $KNbO_3,\;NaNbO_3$ 상태도에 따라 순수한 NKN 세라믹스는 $1140^{\circ}C$에서 안정상을 가지나, 높은 온도로 인하여$Na_2O$$K_2O$가 쉽게 휘발됨에 따라 화학량 비의 변화가 생겨 이차 상을 형성하기도 한다. 따라서 본 연구에서는 $LiNbO_3$의 새로운 고용체를 추가시켜 기본 NKN조성에 압전성 및 고온에서의 상안정성을 향상시키고자 하였다. 최적 조성을 설계하기 위하여 (1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$, x=(0,0.02,0.04,0.06,0.08)의 범위에서 조성을 변화시키면서 실험하였다. 시편 제작은 일반적인 세라믹스 소결 공정을 적용하였는데, $850^{\circ}C$에서 5시간 하소 후 $1080^{\circ}C$에서 2시간 소결하였다. 하소 및 소결 후에는 XRD분석을 통해 perovskite구조를 확인하였고, 미세구조 확인을 위해 주사전자현미경 (SEM)으로 관찰하였다. 압전특성을 평가하기 위해 압전 $d_{33}$-meter를 사용하였으며, impedance analyzer (HP 4194A)를 이용하여 전기적 특성을 측정하였다.

  • PDF

Improvement of the Figure of Merit in Pb[(Mg1/3Ta2/3)0.7Ti0.3]O3 Systems

  • Kim, Yeon Jung
    • Applied Science and Convergence Technology
    • /
    • v.25 no.5
    • /
    • pp.88-91
    • /
    • 2016
  • The $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+xwt%PbO systems at temperature of $1250^{\circ}C$ for 4 hours was successful synthesized. In this study, PbO-doped $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$ systems with non-linear behaviors showed ordering-degree dependence at the low temperature range were prepared using the columbite precursor method. And the characteristic of remnant polarization vs. electric field were analyzed. The pyroelectric, dielectric and piezoelectric properties of partially disordered $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+xwt%PbO solid solutions were studied as a function of temperature, frequency, and electric field. It showed distinct features of temperature dependent of pyroelectric coefficient, spontaneous polarization and dielectric constant at about $50^{\circ}C$. The figure of merit was calculated as pyroelectric coefficient, dielectric constant and dissipation factor. It was found that the high voltage responsivity FV, high detectivity FD were $0.0373m^2/C$ and $0.6735{\times}10^{-4}Pa{-1/2}$, respectively, in the $Pb[(Mg_{1/3}Ta_{2/3})_{0.7}Ti_{0.3}]O_3$+3.0 wt%PbO system.

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Charcaterization of the ZnO thin film SAW filter (RF 마그네트론 스터터링에 의한 ZnO박막증착 및 SAW 필터 특성 분석)

  • Lee, Yong-Ui;Yang, Hyeong-Guk;Kim, Yeong-Jin;Han, Jeong-In;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.783-791
    • /
    • 1994
  • Piezoelectric ZnO thin films were deposited on 7059 glass substrate by rf magnetron sputtering. The effects of deposition parameter, such as rf power, gas pressure and $O_{2}$/Ar gas ratio, on the crystallinity and electrical properties of the deposited ZnO thin films were studied. It was found that the deposition rate was higher than the previously reported values. ZnO films were suitable for SAW filter since a standard deviation of XRD (002) peak rocking curve was less than $6^{\circ}$. ZnO thin films, which were deposited at $O_{2}$/Ar ratio larger than 25%, showed high resistance. SAW filter was fabricated using ZnO film, of which thickness was 0.25 of the wavelength of the propatating surface acoustic wave. The measured frequency response was consistent with the calculated one. The SAW filter had center frequency 39.08 MHz, phase velocity 2501 m/sec and insertion loss 29 dB.

  • PDF

Spectral Element Formulation for Analysis of Lamb Wave Propagation on a Plate Induced by Surface Bonded PZT Transducers (표면 부착형 PZT소자에 의해 유발된 판 구조물의 램파 전달 해석을 위한 스펙트럼 요소 정식화)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Kang, Joo-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1157-1169
    • /
    • 2008
  • This paper presents spectral element formulation which approximates Lamb wave propagation by PZT transducers bonded on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by a piezoelectric (PZT) layer rigidly bonded on a base plate. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Euler-Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with the electro-mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are obtained through equations of motions converted into frequency domain. Detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through numerical examples.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Frequency Dependent Magnetoelectric Responses in [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] Particulate Composites

  • Choi, Moon Hyeok;Noh, Byung Il;Yun, Woosik;Jung, Chaewon;Yang, Su Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.303-307
    • /
    • 2022
  • Magnetoelectric (ME) properties of 3-0 type particulate composites have been investigated with respect to application features for reliable magnetic sensitivity and magnetically-induced output voltage. In order to figure out the magnetoelectric characteristics in the ME composites, frequency dependent ME responses were studied from [0.948 Na0.5K0.5NbO3-0.052 LiSbO3]-[Co1-xZnxFe2O4] (NKNLS)/Co1-xZnxFe2O4 (CZFO, x=0, 0.1, and 0.2). As a result, the maximal αME of 23.15 mV/cm·Oe was achieved from the NKNLS-CZFO (xZn = 0.1) composites at resonance frequency of 315 kHz and Hdc = 0 Oe. From the frequency dependent ME responses, it is clearly described that the self-biased ME composites can be used for applications as both magnetic sensors and energy harvesters, respectively.

In situ Electric-Field-Dependent X-Ray Diffraction Experiments for Ferroelectric Ceramics (강유전 세라믹의 전기장 인가에 따른 in situ X-선 회절 실험)

  • Choi, Jin San;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.431-438
    • /
    • 2022
  • In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

Numerical analysis for electro-mechanical coupling performance of 1-3 type Piezo-composite (1-3형 압전복합체의 전기-기계 결합성능에 대한 수치해석)

  • Shin, H.Y.;Kim, J.H.;Lim, S.J.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.253-258
    • /
    • 2011
  • Electro-mechanical coupling performance ($k_t$) of a 1-3 type Piezo-composite was analyzed numerically using FEM. The calculated physical properties of the PZT ceramics were compared with the experimental data and the accuracy of the numerical method was verified. Also the $k_t$ of the composite was analyzed with the vol% and the material properties of the constitutional parts, and the aspect ratio of the PZT rod. As the simulated results, the $k_t$ increased rapidly when the vol% of the PZT ceramics increased up to 30 vol% and saturated the constant value in the above region. And the composite using the soft matrix polymer than the hard one have the superior $k_t$ characteristics. The $k_t$ was greatly influenced by the aspect ratio of the PZT rod up to 30 vol% of PZT ceramics. To improve the $k_t$ characteristics, it is useful that the composite consist of the relatively flexible polymers and the PZT material having the excellent piezoelectric characteristics.