• 제목/요약/키워드: Piezoelectric actuators

검색결과 403건 처리시간 0.025초

평행한 적층 압전 액추에이터로 구성된 진동절삭기의 기구학적 특성 고찰 (Kinematical Characteristics of Vibration Assisted Cutting Device Constructed with Parallel Piezoelectric Stacked Actuators)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1185-1191
    • /
    • 2011
  • The kinematic characteristics of cutting device significantly affects cutting performance in 2-dimensional elliptical vibration cutting(EVC) where the cutting tool cuts workpiece, traversing a micro-scale elliptical trajectory in a trochoidal motion. In this study, kinematical characteristics of EVC device constructed with two parallel stacked piezoelectric actuators were analytically modeled and compared with the experimental results. The EVC device was subjected to step and low-frequency(0.1 Hz) sinusoidal inputs to reveal only its kinematical displacement characteristics. Hysteresis in the motion of the device was observed in the thrust direction and distinctive skew of the major axis of the elliptical trajectory of the cutting tool was also noticed. Discrepancy in the voltage-to-displacement characteristics of the piezoelectric actuators was found to largely contribute to the skew of the major axis of the elliptical trajectory of the cutting tool. Analytical kinematical model predicted the cutting direction displacement within 10 % error in magnitude with no phase error, but in estimating the thrust direction displacement, it showed a $27^{\circ}$ of phase-lag compared with the measured displacement with no magnitude error.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.

전기적 피로하중을 받는 압전 작동기의 손상 메커니즘 (Damage Mechanisms of a Piezoelectric Actuator under Electric Fatigue Loading)

  • 우성충;구남서
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.856-865
    • /
    • 2008
  • Damage mechanisms in bending piezoelectric actuators under electric fatigue loading are addressed in this work with the aid of an acoustic emission (AE) technique. Electric cyclic fatigue tests have been performed up to $10^7$ cycles on the fabricated bending piezoelectric actuators. An applied electric loading range is from -6 kV/cm to +6 kV/cm, which is below the coercive field strength of the PZT ceramic. To confirm the fatigue damage onset and its pathway, the source location and distributions of the AE behavior in terms of count rate and amplitude are analyzed over the fatigue range. It is concluded that electric cyclic loading leads to fatigue damages such as transgranular damages and intergranular cracking in the surface of the PZT ceramic layer, and intergranular cracking even develops into the PZ inner layer, thereby degrading the displacement performance. However, this fatigue damage and cracking do not cause the final failure of the bending piezoelectric actuator loaded up to $10^7$ cycles. Investigations of the AE behavior and the linear AE source location reveal that the onset time of the fatigue damage varies considerably depending on the existence of a glass-epoxy protecting layer.

Textured Ceramics for Multilayered Actuator Applications: Challenges, Trends, and Perspectives

  • Temesgen Tadeyos Zate;Nu-Ri Ko;Hye-Lim Yu;Woo-Jin Choi;Jeong-Woo Sun;Jae-Ho Jeon;Wook Jo
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.214-225
    • /
    • 2023
  • Piezoelectric actuators, which utilize piezoelectric crystals or ceramics, are commonly used in precision positioning applications, offering high-speed response and precise control. However, the use of low-performance ceramics and expensive single crystals is limiting their versatile use in the actuator market, necessitating the development of both high-performance and cost-effective piezoelectric materials capable of delivering higher forces and displacements. The use of textured Pb (lead)-based piezoelectric ceramics formed by so-called templated grain growth method has been identified as a promising strategy to address the performance and cost issue. This review article provides insights into recent advances in texturing Pb-based piezoelectric ceramics for improved performance in actuation applications. We discussed the relevant issues in detail focusing on current challenges and emerging trends in the textured piezoelectric ceramics for their reliability and performance in actuator applications. We discussed in detail focusing on current challenges and emerging trends of textured piezoelectric ceramics for their reliability and performance in actuator applications. In conclusion, the article provides an outlook on the future direction of textured piezoelectric ceramics in actuator applications, highlighting the potential for further success in this field.

압전세라믹 기판과 고자왜박막을 결합한 스마트액츄에이타 (Smart Actuators Composed of Piezoelectric Ceramics and Highly Magnetostrictive films)

  • 신광호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권5호
    • /
    • pp.289-293
    • /
    • 2000
  • This paper presents a study on the linear compensation of nonlinear hysteric actuators using the highly magnetostrictive film pattern as a strain sensor. Elements had a hybrid structure, in which thin soft glass substrate with the highly magnetostrictive amorphous FeCoSiB film was bonded on the PZT piezoelectric substrate. The magnetostrictive film as a strain sensor detects the deflection of an actuator, and a voltage signal from the strain sensor related to the deflection of an actuator is used for the linear control of an actuator.

  • PDF

단결정 압전작동기를 사용한 능동 뒷전플랩 블레이드의 진동하중 감소해석 (Vibratory Loads Reduction Analysis of Active Trailing-edge Flap Blades Using Single Crystal Piezoelectric Actuators)

  • 박재상;김태성;신상준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.326-331
    • /
    • 2007
  • This paper conducts a vibratory loads reduction analysis of an Advanced Active Trailing-edge Flap (AATF) blade utilizing single crystal piezoelectric actuators. For an AATF blade, a new L-L piezostack actuator using single crystal PMN-PT materials is designed. The AATF blade is designed to have similar characteristics to the Advanced Active Twist Rotor (AATR) blade. The active trailingedge flap is assumed to be 20% of the blade span and 15% of the chord, located at 75% of the blade radius. In order to conduct the vibratory loads reduction analysis of the AATF blade in forward flight, DYMORE, a multi-body dynamics analysis code, is used. The simulation result shows that the hub vibratory loads may be reduced by approximately 89% even with a much lower input-voltage when comparing with the other active rotor systems.

  • PDF

미세 초음파 타원궤적 진동절삭 (I) 미세 초음파 가공을 위한 타원 절삭경로 생성 (Micro Ultrasonic Elliptical Vibration Cutting (I) The Generation of a Elliptical Vibration Cutting Motion for Micro Ultrasonic Machining)

  • 노병국;김기대
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.190-197
    • /
    • 2005
  • For precise micro-grooving and surface machining, a mechanism for creating elliptical vibration cutting (EVC) motion is proposed which uses two parallel piezoelectric actuators. And based on its kinematical analysis, variations of EVC path are investigated as a function of dimensional changes in the mechanism, phase difference and amplitude of excitation sinusoidal voltages. Using the proposed PZT mechanism, various types of two dimensional EVC paths including one dimensional vibration cutting path along the cutting direction and thrust direction can be easily obtained by changing the phase lag, the amplitude of the piezoelectric actuators, and the dimension of the mechanism.

A controllability-based formulation for the topology optimization of smart structures

  • Goncalves, Juliano F.;Fonseca, Jun S.O.;Silveira, Otavio A.A.
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.773-793
    • /
    • 2016
  • This work presents a methodology to distribute piezoelectric material for structural vibration active control. The objective is to design controlled structures with actuators which maximizes the system controllability. A topology optimization was formulated in order to distribute two material phases in the domain: a passive linear elastic material and an active linear piezoelectric material. The objective is the maximization of the smallest eigenvalue of the system controllability Gramian. Analytical sensitivities for the finite element model are derived for the objective functions and constraints. Results and comparisons with previous works are presented for the vibration control of a two-dimensional short beam.

Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm

  • Nestorovic, Tamara;Trajkov, Miroslav;Garmabi, Seyedmehdi
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1041-1062
    • /
    • 2015
  • In this paper a method of finding optimal positions for piezoelectric actuators and sensors on different structures is presented. The genetic algorithm and multi-objective genetic algorithm are selected for optimization and $H_{\infty}$ norm is defined as a cost function for the optimization process. To optimize the placement concerning the selected modes simultaneously, the multi-objective genetic algorithm is used. The optimization is investigated for two different structures: a cantilever beam and a simply supported plate. Vibrating structures are controlled in a closed loop with feedback gains, which are obtained using optimal LQ control strategy. Finally, output of a structure with optimized placement is compared with the output of the structure with an arbitrary, non-optimal placement of piezoelectric patches.

Micro 선반을 이용한 Micro/Meso 절삭에 관한 연구 (Micro/Meso Cutting with Micro Turning Lathe)

  • 고태조;김희술;배영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1025-1028
    • /
    • 2002
  • In this paper, a micro-turning lathe is introduced for micro machining of aluminum rod. To give feed motion, stepwise motion[2] actuators are used instead of the conventional inchworm mechanism. These are consisted of two Piezoelectric ceramics; one is for feeding the slider, and the other is for clamping the slider in the guide way of the body. The guide is V-form. The linearity and positional accuracy of the actuators is good enough far high precision motion. Since the system is more compact than the conventional system using three Piezoelectric ceramics, it is applicable for the micro-machine or MEMS unit. To fabricate the lathe, a small spindle unit with ball bearings of diameter of 10 millimeter is built-up on the top the slider. The motion is feed backed with miniaturized linear encoder attached each axis slider. The diamond tool bite is used for cutting tool. The machining is tried to make small diameter rod. The possible diameter that can be machined in this machine is presented as well as chip formation, surface roughness, and machinability.

  • PDF