• Title/Summary/Keyword: Piezoelectric Transducers

Search Result 217, Processing Time 0.033 seconds

A Study of a Wideband Acoustic Transducer for Underwater Communication Using 1-3 Type Piezoelectric Transducer (1-3형 압전 복합체를 이용한 광대역 수중 통신용 음향 트랜스듀서에 관한 연구)

  • Lee, Kyung-Woo;So, Hyoung-Jong;Lim, Sil-Mook;Kim, Won-Ho;Cho, Wun-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • Recently, many researches in relation to data transmission with faster speed and greater volume, many researches have been carried out on sonar systems for underwater communication. According to these researches, an acoustic transducer for underwater communication requires wide bandwidth properties. In domestic researches for underwater communication sonar, an operating frequency in the range of $20{\sim}40\;kHz$ is used. In this paper, we propose anon-resonance type acoustic transducer for underwater communication. The TVR (transmitting voltage response) characteristics increased linearly as the frequency increased, and the RVS (receiving voltage sensitivity) characteristics were constant as the frequency increased. Traditional techniques for wide bandwidth transducershave a limit and a transmission loss difference at lower and higher frequency operating ranges. In this paper, the new transducer proposed decreased the transmission loss under some conditions. It was optimized with the FE analysis tool (ATILA) and evaluated using the TVR and the RVS characteristics in the range of $10{\sim}90\;kHz$. The value of TVR was 138 dB at 20 kHz and 148 dB at 40 kHz, and the differences was 12 dB. The value of RVS was $195{\pm}2\;dB$ and nearly constant. From theseresults, it is certain that the developed transducers can be used for an underwater communication network in the 1.3 km range with both a 20 kHz bandwidth and 30 kHz center frequency.

The Influences of Residual Stress on the Frequency of Ultrasonic Transducers with Composite Membrane Structure

  • Lee Seungmock;Kim Jong-Min;Shin Young-Eui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.76-84
    • /
    • 2006
  • Arrayed ultrasonic sensors based on the piezoelectric thin film (lead-zirconate-titanate: Pb($Zr_{0.52}Ti_{0.48})O_{3}$) having composite membrane structure are fabricated. Different thermal and elastic characteristics of each layer generate the residual stress during the high temperature deposition processes, accomplished diaphragm is consequently bowing. We present the membrane deflection effects originated from the residual stress on the resonant frequencies of the sensor chips. The resonant frequencies ($f_r$) measured of each sensor structures are located in the range of $87.6{\sim}111\;kHz$, these are larger $30{\sim}40\;kHz$ than the resultant frequencies of FEM. The primary factors of $f_r$ deviations from the ideal FEM results are the membrane deflections, and the influence of stiffness variations are not so large on that. Membrane deflections have the effect of total thickness increase which sensitively change the $f_r$ to the positive direction. Stress generations of the membrane are also numerically predicted for considering the effect of stiffness variations on the $f_r$.

Simulating a Time Reversal Process for A0 Lamb Wave Mode on a Rectangular Plate Using a Virtual Sensor Array Model (가상 탐지자 배열 모델을 이용한 직사각형 판에서 A0 램파 모드 시간반전과정 모사)

  • Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.460-469
    • /
    • 2010
  • This paper presents the analysis of a time reversal process for $A_0$ Lamb wave mode($A_0$ mode) on a rectangular plate. The dispersion characteristic equation of the $A_0$ mode is approximated using the Timoshenko beam theory. A virtual sensor array model is developed to consider the effects of reflections occurring on the plate boundary on the time reversal process. The time reversal process is formulated in the frequency domain using the virtual sensor array model. The reconstructed signal is obtained in the time domain through an inverse fast Fourier transform. The validity of the proposed method is demonstrated through the comparison to the numerical simulation results computed by the finite element analysis.

Fabrication of PVDF Structures by Near Field Electrospinning

  • Kim, Seong-Uk;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.423.1-423.1
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) has drawn much attention due to its many advantages. PVDF shows high mechanical strength and flexibility, thermal stability, and good piezoelectricity enabling its application to various fields such as sensors, actuators, and energy transducers. Further studies have been conducted on PVDF in the form of thin films. The thin films exhibit different ionic conductivity according to the number of pores within the film, letting these films to be applied as electrolytes or separators of batteries. Porous PVDF membranes are also easily processed, usually made by using electrospinning. However, a large portion of researches were conducted using PVDF membranes produced by far field electrospinning, which is not a well-controlled experimental method. In this paper, we use near field electrospinning (NFES) process for more controlled, small-scaled, mesh type PVDF structures of nano to micro fibers fabricated by controlling process parameters and investigate the properties of such membranous structures. These membranes vary according to geometrical shape, pore density, and fiber thickness. We then measured the mechanical strength and piezoelectric characteristic of the structures. With various geometries in the fiber structures and various scales in the fibers, these types of structures can potentially lead to broader applications for stretchable electronics and dielectric electro active polymers.

  • PDF

An Underwater Acoustic Transducer Responding to Frequency Shift by Doppler Effect (도플러효과에 의한 주파수 변화에 대응하는 수중 초음파변환자의 제안)

  • Kim, Jung-Whan;Kim, Moo-Joon;Ha, Kang-Lyeol
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.16-23
    • /
    • 1999
  • When a moving piezoelectric transducer detects an object in water, its receiving sensitivity is attenuated by Doppler effect. In this paper, a method for compensating the effect is suggested by using a newly designed condenser of which capacitance is varied according to the moving speed of the transducer. Using the method, the receiving resonant frequency of the transducer can be changed automatically. As a result, there is good agreement between the results of experiment and those of calculation. It is confirmed that the response sensitivity degradation of transducers due to Doppler effect can be compensated in the range of $1{\sim}10^m/_s$ moving speed.

  • PDF

The Etching Characteristics of ZnO thin Films using $BCl_3/Ar$ Inductively Coupled Plasma ($BCl_3/Ar$ 유도 결합 플라즈마를 이용한 ZnO 박막의 식각 특성)

  • Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Jong-Gyu;Kang, Chan-Min;Kim, Chang-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.566-570
    • /
    • 2007
  • The specific electrical, optical and acoustic properties of Zinc Oxide (ZnO) are important for semiconductor process which has many various applications. Piezoelectric ZnO films has been widely used for such as transducers, bulk and surface acoustic-wave resonators, and acousto-optic devices. In this study, we investigated etch characteristics of ZnO thin films in inductively coupled plasma etch system with $BCl_3/Ar$ gas mixture. The etching characteristics of ZnO thin films were investigated in terms of etch rates and selectivities to $SiO_2$ as a function of $BCl_3/Ar$ gas mixing ratio, RF power, DC bias voltage and process pressure. The maximum ZnO etch rate of 172 nm/min was obtained for $BCl_3$ (80%)/Ar(20%) gas mixture. The chemical states on the etched surface were investigated with X-ray photoelectron spectroscopy (XPS).

Development of High Frequency pMUT Based on Sputtered PZT

  • Lim, Un-Hyun;Yoo, Jin-Hee;Kondalkar, Vijay;Lee, Keekeun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2434-2440
    • /
    • 2018
  • A new type of piezoelectric micromachined ultrasonic transducer (pMUT) with high resonant frequency was developed by using a thin lead zirconate titanate (PZT) as an insulation layer on a floating $10{\mu}m$ silicon membrane. The PZT insulation layer facilitated acoustic impedance matching at active pMUT, leading to a high performance in the acoustic conversion property compared with the transducer using $SiO_2$ insulation layer. The fabricated ultrasonic devices were wirelessly measured by connecting two identical acoustic transducers to two separate ports in a single network analyzer simultaneously. The acoustic wave emitted from a transducer induced a $3.16{\mu}W$ on the other side of the transducer at a distance of 2 cm. The transducer performances in terms of device diameters, PZT thickness, annealings, and different DC polings, etc. were investigated. COMSOL simulation was also performed to predict the device performances prior to fabrication. Based on the COMSOL simulation, the device was fabricated and the results were compared.

Review of Non-Destructive Evaluation Technologies for Rail Inspection (철도 레일의 결함 검출을 위한 비파괴탐상 기술)

  • Han, Soon-Woo;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.398-413
    • /
    • 2011
  • For railway safety, it is very important to detect damages of rails at their early stage because any undetected damage in a rail can break the rail and cause a serious railway accident. In this paper, several NDT applicable to rail inspections are described. Major damage types in rails are discussed first and the rail inspection technology using conventional piezoelectric ultrasonic transducers, which is widely adopted for damage detection of rails, is explained. Other NDT being researched or tested for rail inspection are also discussed as complementary technologies to the concurrent contact type ultrasonic inspection. Characteristics of each rail inspection technologies are evaluated in order to provide requirements for future development of a new rail inspection method.

Application of principal component analysis and wavelet transform to fatigue crack detection in waveguides

  • Cammarata, Marcello;Rizzo, Piervincenzo;Dutta, Debaditya;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.6 no.4
    • /
    • pp.349-362
    • /
    • 2010
  • Ultrasonic Guided Waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges and high sensitivity to small flaws. This paper describes a SHM method based on UGWs, discrete wavelet transform (DWT), and principal component analysis (PCA) able to detect and quantify the onset and propagation of fatigue cracks in structural waveguides. The method combines the advantages of guided wave signals processed through the DWT with the outcomes of selecting defect-sensitive features to perform a multivariate diagnosis of damage. This diagnosis is based on the PCA. The framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a PXI platform that controls the generation and measurement of the ultrasonic signals by means of piezoelectric transducers made of Lead Zirconate Titanate. Although the approach is demonstrated in a beam test, it is argued that the proposed method is general and applicable to any structure that can sustain the propagation of UGWs.

A Study on Dry Friction-Induced Sound (乾性摩찰音 에 관한 硏究)

  • 김재호;김석삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.6
    • /
    • pp.591-598
    • /
    • 1984
  • The results of measurements showing normal vibrations and rubbing noise generated during unlubricated smooth sliding between metal surfaces are presented. The measurements were made on pin-on-disc type apparatus instrumented with piezoelectric acceleration transducers and microphones. Spectral analysis of the both signals up to frequency of 10kHz indicates that they are closely correlated. The major components of both signals in this frequency range are primarily associated with the normal contact vibrations which are excited by surface irregularities being swept through the contact region during sliding. As an approximation to the seismic input of surface irregularities, an effective surface wavenumber spectrum was assumed in the form of an inverse vibration and noise measurements for a number of surface finishes and mean loads. The predominant frequency component of which levels of the normal vibration and noise are close to overall levels of the both signals is induced by contact resonance between the two bodies and its frequency can be calculated from the Hertzian theory.